Astrophysical Bulletin

, Volume 68, Issue 1, pp 107–124 | Cite as

On possible influence of space weather on agricultural markets: Necessary conditions and probable scenarios



We present the results of study of a possible relationship between the space weather and terrestrial markets of agricultural products. It is shown that to implement the possible effect of space weather on the terrestrial harvests and prices, a simultaneous fulfillment of three conditions is required: 1) sensitivity of local weather (cloud cover, atmospheric circulation) to the state of space weather; 2) sensitivity of the area-specific agricultural crops to the weather anomalies (belonging to the area of risk farming); 3) relative isolation of the market, making it difficult to damp the price hikes by the external food supplies. Four possible scenarios of the market response to the modulations of local terrestrial weather via the solar activity are described. The data sources and analysismethods applied to detect this relationship are characterized. We describe the behavior of 22 European markets during the medieval period, in particular, during the Maunder minimum (1650–1715). We demonstrate a reliable manifestation of the influence of space weather on prices, discovered in the statistics of intervals between the price hikes and phase price asymmetry. We show that the effects of phase price asymmetry persist even during the early modern period in the U.S. in the production of the durum wheat. Within the proposed approach, we analyze the statistics of depopulation in the eighteenth and nineteenth century Iceland, induced by the famine due to a sharp livestock reduction owing to, in its turn, the lack of foodstuff due to the local weather anomalies. A high statistical significance of temporal matching of these events with the periods of extreme solar activity is demonstrated. We discuss the possible consequences of the observed global climate change in the formation of new areas of risk farming, sensitive to space weather.


Sun: solar-terrestrial relations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Swift, Travels into Several Remote Nations of the World, in Four Parts. By Lemuel Gulliver, First a Surgeon, and Then a Captain of Several Ships (For Benj. Motte, London, 1726).Google Scholar
  2. 2.
    A. Smith, An Inquiry into the Nature and Causes of the Wealth of Nations (W. Strahan & T. Cadell, London, 1776).Google Scholar
  3. 3.
    W. Herschel, Philosophical Transactions of the Royal Society of London 91, 261 (1801).ADSGoogle Scholar
  4. 4.
    A. L. Chizhevsky, The Terrestrial Echo of Solar Storms (Mysl, Moscow, 1976).Google Scholar
  5. 5.
    W. S. Jevons, Nature 13, 15 (1875).Google Scholar
  6. 6.
    W. S. Jevons, Nature 19, 33 (1878).ADSCrossRefGoogle Scholar
  7. 7.
    W. S. Jevons, Nature 19, 588 (1879).ADSCrossRefGoogle Scholar
  8. 8.
    C. Azariadis, J. Econ. Theory 25, 380 (1981).MATHCrossRefGoogle Scholar
  9. 9.
    K. Georgieva and B. Kirov, J. Atmos. Solar Terr. Phys. 73(2–3), 207 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    H. Svensmark and E. Friis-Christensen, J. Atmos. Sol. Terr. Phys. 59, 1225 (1997).ADSCrossRefGoogle Scholar
  11. 11.
    N. D. Marsh and H. Svensmark, Phys. Rev. Lett. 85, 5004 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    J. Kirkby and CLOU Dcollaboration, Nature 476, 429 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    R. Lukianova and G. Alekseev, Solar Physics 224, 445 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    F. Boberg and H. Lundstedt, Geophysical Res. Let. 29(15), 13 (2002).Google Scholar
  15. 15.
    K. Lassen and E. Friis-Christensen, J. Atm. Terr. Phys. 57, 835 (1995).ADSCrossRefGoogle Scholar
  16. 16.
    B. Fastrup, E. Pedersen, E. Lillestol, et al. (CLOUD collaboration), Preprint CERN/SPSC 2000-021, SPSC/P317 (2000);
  17. 17.
    N. J. Shaviv, J. Geophys. Res.-Space Phys. 110, A08105 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    R. G. Harrison and D. B. Stephenson, Proc. of the Royal Soc. A 462(2068), 1221 (2006).MATHCrossRefGoogle Scholar
  19. 19.
    M. I. Pudovkin, O. M. Raspopov, Physics-Uspekhi 163, 113 (1993).Google Scholar
  20. 20.
    L. I. Dorman, in Climate Change: Observed Impacts on Planet Earth, Ed. by M. L. Letcher (Elsevier, 2009), pp. 43–76.Google Scholar
  21. 21.
    M. G. Ogurtsov, G. E. Kocharov, and Yu. A. Nagovitsyn, Astron. Rep. 47, 517 (2003).ADSCrossRefGoogle Scholar
  22. 22.
    J. D. Haigh, A. R. Winning, R. Toumi, and J. W. Harder, Nature 467, 696 (2010).ADSCrossRefGoogle Scholar
  23. 23.
    R. Brázdil, P. Dobrovolný, J. Luterbacher, et al., Climatic Change 101, 7 (2010).CrossRefGoogle Scholar
  24. 24.
    A. Ruzmaikin, Advances in Space Research 40, 1146 (2007).ADSCrossRefGoogle Scholar
  25. 25.
    G. M. Richter and M. A. Semenov, Agric. Syst. 84(1), 77 (2005).CrossRefGoogle Scholar
  26. 26.
    R. J. Shiller, Speculative Prices and Popular Models, J. Econ. Perspectives 4(2), 55 (1990).CrossRefGoogle Scholar
  27. 27.
    M. Ejrnæs, K. G. Persson, and S. Rich, The Economic History Review 61(s1), 140 (2008).CrossRefGoogle Scholar
  28. 28.
    V. I. Arnold, Catastrophe Theory (Springer-Verlag, Berlin, 1992).CrossRefGoogle Scholar
  29. 29.
    W. H. Beveridge, Economic Journal XXXI, 429 (1921).Google Scholar
  30. 30.
    Yu. A. Nagovitsyn, Astron. Lett. 33, 385 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    J. Beer, S. Tobias, and N. Weiss, Solar Phys. 181, 237 (1998).ADSCrossRefGoogle Scholar
  32. 32.
    J. E. T. Rogers, A History of Agriculture and Prices in England, (Clarendon Press, Oxford, 1866; Reprinted by Kraus Reprint Ltd, Vaduz, 1963).Google Scholar
  33. 33.
    E. H. P. Brown and S. V. Hopkins, Economica XXIII, 296 (1956).CrossRefGoogle Scholar
  34. 34.
    International Institute of Social History,
  35. 35.
    A. B. Appleby, J. Econ. History 39, 865 (1979).CrossRefGoogle Scholar
  36. 36.
    P. H. Hooker, J. Royal Stat. Soc. 70, 1, (1907).CrossRefGoogle Scholar
  37. 37.
    H. Arctowski, Bull. Amer. Geograph. Soc. XLII, 270 (1910).CrossRefGoogle Scholar
  38. 38.
    H. Arctowski, Bull. Amer. Geograph. Soc. XLII, 481 (1910).CrossRefGoogle Scholar
  39. 39.
    D. A. Vasey, Climatic Change 48, 243 (2001).CrossRefGoogle Scholar
  40. 40.
    M. A. Shea and D. F. Smart, Radiocarbon 34, 255 (1992).Google Scholar
  41. 41.
    P. V. Kishcha, I. V. Dmitrieva, and V. N. Obridko, J. Atmos. Sol. Terr. Phys. 61, 799 (1999).ADSCrossRefGoogle Scholar
  42. 42.
    A. Ruzmaikin, Geophys. Res. Let. 26, 2255 (1999).ADSCrossRefGoogle Scholar
  43. 43.
    L. A. Pustil’nik and G. Yom Din, Solar Physics 223, 335 (2004).ADSCrossRefGoogle Scholar
  44. 44.
    L. A. Pustil’nik and G. Yom Din, Solar Physics 224, 473 (2004).ADSCrossRefGoogle Scholar
  45. 45.
    D. B. Suits, J. Amer. Stat. Assoc. 52, 548 (1957).MATHCrossRefGoogle Scholar
  46. 46.
    USDA, National Agricultural Statistics Service, Prices Received by Farmers: Historic Prices & Indexes 1908–1992 (92152),

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Tel Aviv UniversityTel AvivIsrael
  2. 2.Golan Research InstituteKatzrinIsrael
  3. 3.Open University of IsraelRaananaIsrael

Personalised recommendations