Advertisement

Astrophysical Bulletin

, Volume 67, Issue 2, pp 219–224 | Cite as

Spectral and spatial fluctuations of cosmic microwave background radiation. RATAN-600 radio telescope observations with a Fourier spectral analyzer

  • A. P. Venger
  • I. V. Gosachinskij
  • V. K. Dubrovich
Article
  • 43 Downloads

Abstract

The “circumpolar survey” technique allowed us to achieve a rather high antenna temperature sensitivity of 0.5 mK at 6 cm on a fixed antenna with a relatively narrow frequency resolution band (600 kHz) and an angular resolution of 45″ × 7′. Starting from 2007 we use a Fourier spectral analyzer with a survey band 10 times broader than that of previous observations. This upgrade allowed us to rapidly perform repeated test observations, which confirmed the power-law nature and the frequency structure of spatial spectra in two strips in the vicinity of the celestial pole in the 4′–16′ interval of angular periods. These observations also showed that the Galactic CH molecular line that was by chance captured in our survey strip (Λ-doubling of rotational transition) has nothing to do with the emission spectra we obtained. The angular pattern of emission in two main lines of Λ-doubling (4847.84 and 4870.12 MHz) is absolutely different, whereas there is practically no maser amplification in the CH line to explain this fact. Our observations also confirm the H110 α line (4874.157 MHz), which forms in the tenuous ionized Galactic hydrogen at such relatively high latitudes. Other features of the spatial spectra also appear to be quite real, although their interpretation remains unclear and requires further studies.

Keywords

radio continuum: general cosmology: cosmic background radiation methods: observational: radio astronomy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. K. Dubrovich, Astron. Astrophys. Trans. 5, 57 (1994).ADSCrossRefGoogle Scholar
  2. 2.
    V. K. Dubrovich and A. A. Lipovka, Astronom. and Astrophys. 296, 301 (1995).ADSGoogle Scholar
  3. 3.
    V. K. Dubrovich, Astronom. and Astrophys. 324, 27 (1997).ADSGoogle Scholar
  4. 4.
    I. V. Gosachinskij, V. K. Dubrovich, S. R. Zhelenkov, et al., Astronom. Zh. 79, 601 (2002).Google Scholar
  5. 5.
    I.V.Gosachinskij,V. K. Dubrovich,A. P. Venger, and G. N. Il’in, Astrophysical Bulletin 63, 290 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    C. M. Persson, R. Maoli, P. Encrenas, et al., Astronom. and Astrophys. 515, 72 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    N. F.Esepkina,N.S. Bakhvalov,B. A. Vaslil’ev, et al., Astrofiz. Issled. (Izvestiya Spets. Astrofiz. Obs.) 11, 182 (1979).Google Scholar
  8. 8.
    A. M. Pilipenko and V. A. Prozorov, SAO Preprint No. 114 (St. Petersburg, 1995).Google Scholar
  9. 9.
    S. V. Logvinenko et al., Astrophysical Bulletin 63, 193 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    C. Gregory, W. K. Scott, K. Douglas, et al., Astrophys. J. Suppl. 103, 427 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    E. K. Majorova, Candidate’s Dissertation in Physics and Mathematics (SAO RAS, Leningrad, 1986).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. P. Venger
    • 1
  • I. V. Gosachinskij
    • 1
  • V. K. Dubrovich
    • 1
  1. 1.Special Astrophysical Observatory, St. Petersburg BranchRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations