Advertisement

Russian Journal of Pacific Geology

, Volume 12, Issue 3, pp 210–224 | Cite as

Age, Mineralogical and Geochemical Features, and Tectonic Position of Gabbroids of the Dzhigdinskii Massif, Southeastern Environ of the North Asian Craton

  • A. A. Rodionov
  • I. V. Buchko
  • N. M. Kudryashov
Article

Abstract

Complex mineralogical, geochemical, and geochronological studies of the gabbroids from the Dzhigdinskii Massif located in the western part of the Dzhugdzhur–Stanovoy Superterrane are performed. It is established that the age of the rocks from the Dzhigdinskii Massif is Middle Triassic (244 ± 5 Ma), rather than Early Archean, as was previously assumed. The age of the Dzhigdinskii Massif is close to the age of the formation of the other Triassic gabbroid massifs, such as the Amnunaktinskii (~240 Ma), Lukindinskii (~250 Ma), and Luchinskii (~248 Ma) in the southeastern environ of the North Asian Craton. One of the stages in the formation of the Selenga–Vitim volcanoplutonic belt falls in this period as well. This indicates that the Selenga–Vitim volcanoplutonic belt, along with the granitoids and volcanic rocks, is composed of ultrabasic–basic and basic massifs and that this belt is superposed on the structures of the Selenga–Stanovoy Superterrane, as well as on the western part of the Dzhugdzhur–Stanovoy Superterrane. The gabbro, gabbro–diorite, and series of gabbro and gabbro–diorite with high sodic alkalinity from the Dzhigdinskii Massif show obvious geochemical features of duality, including combination of intraplate and super-subduction origin. In this relation, we can assume that the origin of the gabbroids of the Dzhigdinskii Massif is related to the detachment of the oceanic lithosphere and its subduction into the mantle with the formation of an “asthenospheric window.”

Keywords

gabbroids subduction geochemical duality age Dzhigdinskii Massif Dzhugdzhur–Stanovoy Superterrane Russian Far East 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. G. Agafonenko, A. L. Yashnov, and Z. P. Kozak, State Geological Map of the Russian Federation. 1: 200000. 2nd Edition. Stanovaya Series N-52-XIV (Beregovoi), Ed. by Yu.V. Koshkova (VSEGEI, St. Petersburg, 2007) [in Russian].Google Scholar
  2. 2.
    A. S. Borisenko, V. I. Sotnikov, A. E. Izokh, G. V.Z Polyakov, and A. A. Obolenskii, “Permo-Triassic mineralization in Asia and its relation with plume magmatism,” Russ. Geol. Geophys. 47 (1), 166–182 (2006).Google Scholar
  3. 3.
    I. V. Buchko, A. E. Izokh, E. B. Sal’nikov, A. A. Sorokin, A. B. Kotov, and S. Z. Yakovleva, “Petrology of the Late Jurassic ultramafic-mafic Veselki Massif, southeastern framing of the Siberian Craton,” Petrology 15 (3), 264–274 (2007).CrossRefGoogle Scholar
  4. 4.
    I. V. Buchko, E. B. Sal’nikova, A. M. Larin, A. A. Sorokin, A. P. Sorokin, A. B. Kotov, S. D. Selikoslavinskii, S. Z. Yakovlev, and Yu. V. Plotkina, “Age and geochemistry of the Luchinsky mafic–ultramafic pluton, the southeastern framework of the Siberian Craton,” Dokl. Earth Sci. 413 (3), 367–369 (2007).CrossRefGoogle Scholar
  5. 5.
    I. V. Buchko, A. A. Sorokin, E. B. Sal’nikova, A. B. Kotov, A. M. Larin, A. I. Izokh, S. D. Velikoslavinskii, and S. Z. Yakovleva, “The Late Jurassic age and geochemistry of ultramafic-mafic massifs of the Selenga–Stanovoy superterrane (southern framing of the North Asian Craton),” Russ. Geol. Geophys. 48 (12), 1026–1036 (2007).CrossRefGoogle Scholar
  6. 6.
    I. V. Buchko, A. A. Sorokin, A. E. Izokh, A. M. Larin, A. B. Kotov, E. B. Sal’nikova, S. D. Velikoslavinskii, A. P. Sorokin, S. Z. Yakovleva, and Yu. V. Plotkina, “Petrology of the Early Mesozoic ultramafic–mafic Luchinda massif (southeastern periphery of the Siberian craton),” Russ. Geol. Geophys. 49 (8), 570–581 (2008).CrossRefGoogle Scholar
  7. 7.
    I. V. Buchko, A. A. Sorokin, A. M. Larin, S. D. Velikoslavinskii, A. P. Sorokin, and N. M. Kudryashov, “Late Mesozoic postcollisional high-potassic gabbroids of the Dzhugdzhur–Stanovoi superterrane,” Dokl. Earth Sci. 431 (1), 304–307 (2010).CrossRefGoogle Scholar
  8. 8.
    I. V. Buchko, A. A. Sorokin, E. B. al’nikova, A. B. Kotov, S. D. Velikoslavinskii, A. M. Larin, A. I. Izokh, and S. Z. Yakovleva, “The Triassic stage of mafic magmatism in the Dzhugdzhur–Stanovoi superterrane (southern framing of the north Asian Craton),” Russ. Geol. Geophys. 51 (11), 1157–1166 (2010).CrossRefGoogle Scholar
  9. 9.
    I. V. Buchko, A. A. Sorokin, E. B. al’nikova, A. B. Kotov, A. M. Larin, S. D. Velikoslavinskii, A. P. Sorokin, and Yu. V. Plotkina, “High-titanium gabbroids of the western Dzhugdzhur–Stanovoy superterrane: age and tectonic setting,” Geochem. Int. 48 (6), 617–620 (2010).CrossRefGoogle Scholar
  10. 10.
    I. V. Buchko, A. A. Sorokin, V. A. Ponomarchuk, and A. V. Travin, “Geochemical features, age, and geodynamic settings of the formation of Late Jurassic wehrlite–gabbro Il’deus massif of the Bryanta Block (southeastern framing of the North Asian craton),” Vestn. Gos. Tomsk. Univ., 348, 165–172 (2011).Google Scholar
  11. 11.
    I. V. Buchko, Yu. O. Larionova, V. A. Ponomarchuk, A. A. Sorokin, A. V. Samsonov, and A. B. Kotov, “Results of complex (40Ar/39Ar, Rb-Sr, Sm-Nd) dating of the layered Lukinda massif (Selenga–Stanovoy superterane of the Central-Asian fold belt),” in Isotope Dating of Geological Processes: New Results, Approaches, and Prospects. Proceedings of 4th Russian Conference on Isotope Geochronology, St. Petersburg, Russia, 2015 (IGGD RAN, St. Petersburg, 2015) [in Russian].Google Scholar
  12. 12.
    I. V. Buchko, A. A. Sorokin, A. B. Kotov, E. B. Sal’- nikova, A. M. Larin, S. Z. Yakovleva, and I. V. Anisimova, “Age and tectonic setting of the Amnunaktin monzogabbro–monzodiorite massif (eastern part of the Selenga–Stanovoy superterrane of the Central Asian fold belt),” Dokl. Earth Sci. (in press).Google Scholar
  13. 13.
    S. D. Velikoslavinskii, A. B. Kotov, E. B. Sal’nikova, A.M. Larin, A. A. Sorokin, A. P. Sorokin, V. P. Kovach, E. V. Tolmacheva, and B. M. Gorokhovskii, “Age of the Ilikan Sequence from the Stanovoi Complex of the Dzhugdzhur–Stanovoi superterrane, Central- Asian Foldbelt,” Dokl. Earth Sci. 438 (1), 612–616 (2011).CrossRefGoogle Scholar
  14. 14.
    I. V. Gordienko and M. I. Kuzmin, “Geodynamics and metallogeny of the Mongol–Transbaikalian region,” Geol. Geofiz. 40 (11), 1545–1562 (1999).Google Scholar
  15. 15.
    V. I. Kovalenko, V. V. Yarmolyuk, I. A. Andreeva, N. A. Ashikhmina, A. M. Kozlovsky, E. A. Kudryashova, V. A. Kuznetsov, E. N. Listratova, D. A. Lykhin, and A. V. Nikiforov, Magma Types and their Sources in the Earth’s History. Volume 2. Rare-Metal Magmatism: Rock Associations, Composition, and Magma Sources, Geodynamic Settings of their Formation (IGEM RAN, Moscow, 2006) [in Russian].Google Scholar
  16. 16.
    A. M. Larin, E. B. Sal’nikova, A. B. Kotov, V. A. Glebovitskii, V. P. Kovach, N. G. Berezhnaya, S. Z. Yakovleva, and M. D. Tolkachev, “Late Archean granitoids of the Dambukinski Block of the Dzhugdzhur–Stanovoy Fold Belt: formation and transformation of the continental crust in the Early Precambrian,” Petrology 12 (3), 211–226 (2004).Google Scholar
  17. 17.
    A. M. Larin, E. B. Sal’nikova, A. B. Kotov, V. A. Glebovitskii, S. D. Velikoslavinskii, A. A. Sorokin, S. Z. Yakovleva, A. Fedoseenko, and I. V. Anisimova, Early Cretaceous age of regional metamorphism of the Stanovoi Group in the Dzhugdzhur–Stanovoi Foldbelt: geodynamic implications," Dokl. Earth Sci. 409 (5), 727–731 (2006).CrossRefGoogle Scholar
  18. 18.
    A. M. Larin, A. B. Kotov, E. B. Sal’nikova, A. A. Sorokin, A. P. Sorokin, A. M. Korshunov, S. D. Velikoslavinskii, S. Z. Yakovleva, and Yu. V. Plotkina, “Age and tectonic position of granites and volcanics in the eastern margin of the Selenga–Vitim volcano-plutonic belt,” Dokl. Earth Sci. 441 (1), 1502–1507 (2011).CrossRefGoogle Scholar
  19. 19.
    L. M. Parfenov, N. A. Berzin, A. I. Khanchuk, G. Bodarch, V. G. Belichenko, A. N. Bulgatov, S. I. Dril’, G. L. Kirillova, M. I. Kuzmin, W. J. Nokleberg, A. V. Prokop’ev, V. V. Timofeev, O. Tomurtogoo, and H. Yang, “Model of the formation of orogenic belts of the Central and Northeastern Asia,” Tikhookean. Geol. 22 (6), 7–41 (2003).Google Scholar
  20. 20.
    E. B. Sal’nikova, A. M. Larin, A. B. Kotov, A. P. Sorokin, A. A. Sorokin, S. D. Velikoslavinskii, S. Z. Yakovleva, A. M. Fedoseenko, and Yu. V. Plotkina, " The Toksko–Algomin igneous complex of the Dzhugdzhur–Stanovoi folded region: age and geodynamic setting," Dokl. Earth Sci. 409 (6), 888–892 (2006).CrossRefGoogle Scholar
  21. 21.
    A. N. Sereznikov and Yu. R. Volkova, State Geological Map of the Russian Federation. 1: 1000000 (3rd Generation). Far East Series. Sheet N-52 (Zeya), Ed.by A.S. Vol’skii (VSEGEI, St. Petersburg, 2009) [in Russian].Google Scholar
  22. 22.
    A. A. Tsygankov, B. A. Litvinovskii, B. M. Jahn, M. Reikov, D. I. Lyu, A. N. Larionov, S. L. Presnyakov, E. N. Lepekhina, and S. A. Sergeev, “SEQUENCE OFmagmatic events in the Late Paleozoic of Transbaikalia, Russia (U-Pb isotope data),” Russ. Geol. Geophys. 51 (9), 972–994 (2010).CrossRefGoogle Scholar
  23. 23.
    L. N. Sharpenok, A. E. Kostin, and E. A. Kukharenko, “TAS-diagram total alkalis–silica for the chemical classification and identification of plutonic rocks,” Regional. Geol. Metallogen., No. 56, 40–50 (2013).Google Scholar
  24. 24.
    V. V. Yarmolyuk and V. I. Kovalenko, “Batholiths and geodynamics of batholith formation in the Central Asian Fold Belt,” Russ. Geol. Geophys. 44 (12), 1260–1274 (2003).Google Scholar
  25. 25.
    K. C. Condie, “High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes,” Lithos 79, 491–504 (2005).CrossRefGoogle Scholar
  26. 26.
    J. H. Davies and F. Blanckenburg, “Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens,” Earth Planet. Sci. Lett. 129, 85–102 (1995).CrossRefGoogle Scholar
  27. 27.
    B. M. Jahn, D. A. Litvinovsky, A. N. Zanvilevich, and M. Reichow, “Peralkaline granitoid magmatism in the Mongolian–Trans-Baikalian Belt: evolution, petrogenesis and tectonic significance,” Lithos 113, 521–539 (2009).CrossRefGoogle Scholar
  28. 28.
    R. W. Kay, “Aleutian magnesian andesites: melts from subducted Pacific oceanic crust,” J. Volcanol. Geotherm. Res. 4, 297–322 (1978).CrossRefGoogle Scholar
  29. 29.
    T. E. Krogh, “A low-contamination method for hudrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination,” Geochim. Cosmochim. Acta 37, 485–494 (1973).CrossRefGoogle Scholar
  30. 30.
    B. E. Leake, A. R. Woolley, C. E. S. Arps, W. D. Birch, M. C. Gilbert, J. D. Grice, F. C. Hawthorne, A. Kato, H. J. Kisch, V. G. Krivovichev, K. Linthout, J. Laird, J.A. Mandarino, W. V. Maresch, E. H. Nickel, N. M. S. Rock, J. C. Schumacher, D. C. Smith, N. C. N. Stephenson, L. Ungaretti, E. J. W. Whittaker, and Y. Gou, “Nomenclature of amphiboles: report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names,” Can. Mineral. 35, 219–246 (1997).Google Scholar
  31. 31.
    R. W. Le Maitre, Igneous Rocks. A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, (Cambridge Univ. Press, Cambridge, 2002).CrossRefGoogle Scholar
  32. 32.
    K. R. Ludwig, “PbDat for MS-DOS, Version 1.21,” U.S. Geol. Survey Open-File Rept. 35 (1991).Google Scholar
  33. 33.
    K. R. Ludwig, “ISOPLOT/Ex. Version 06. A geochronological toolkit for Microsoft Excel,” Berkley Geochronol. Center Sp. Publ. No. 1a (1999).Google Scholar
  34. 34.
    W. F. McDonough and S-S. Sun, “The composition of the Earth,” Chem. Geol. 120 (1995).Google Scholar
  35. 35.
    A. Miyashiro, “Volcanic rock series in island arcs and active contintnral margins,” Am. J. Sci., 321–355 (1974).Google Scholar
  36. 36.
    E. G. Nisbet and J. A. Pearce, “Clinopyroxene composition in mafic lavas from different tectonic settings,” Contrib. Mineral. Petrol. 63, 149–160 (1977).CrossRefGoogle Scholar
  37. 37.
    J. A. Pearce, “Trace element characteristics of lavas from destructive plate boundaries,” in Andesites, Ed. by R. S. Thorpe, (Wiley, New York, 1982), pp. 525–548.Google Scholar
  38. 38.
    A. Poldervaart and H. H. Hess, “Pyroxenes in the crystallization of basaltic magma,” J. Geol. 59, 472–489 (1951).CrossRefGoogle Scholar
  39. 39.
    J. S. Stacey and I. D. Kramers, “Approximation of terrestrial lead isotope evolution by a two-stage model,” Earth Planet Sci. Lett 26 (2), 207–221 (1975).CrossRefGoogle Scholar
  40. 40.
    R. H. Steiger and E. Jager, “Subcomission of geochronology: convention of the use of decay constants in geoand cosmochronology,” Earth Planet. Sci. Lett. 36 (2), 359–362 (1976).Google Scholar
  41. 41.
    S. S. Sun and W. F. McDonough, “Chemical and isotopic systematic of oceanic basalts: implication for mantle composition and processes,” Magmatism in the Ocean Basins, Geol. Soc. Sp. Publ. 42, 313–346 (1989).CrossRefGoogle Scholar
  42. 42.
    S. P. Verma, “Geochemistry of evolved magmas and their relationship to subduction-unrelated mafic volcanism and the volcanic front of the Central Mexican Volcanic Belt,” J. Volcanol. Geotherm. Res. 93, 151–171 (1999).CrossRefGoogle Scholar
  43. 43.
    H. P. Zeck, A. B. Kristensen, and I. S. Williams, “Postcollisional volcanism in a sinking slab setting—crustal anatectic origin of pyroxene-andesite magma, Caldear volcanic group, Neogene Alboran Volcanic Province, Southern Spain,” Lithos 45, 499–522 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Rodionov
    • 1
  • I. V. Buchko
    • 1
  • N. M. Kudryashov
    • 2
  1. 1.Institute of Geology and Nature Management, Far East BranchRussian Academy of SciencesBlagoveshchenskRussia
  2. 2.Geological Institute, Kola Science CenterRussian Academy of SciencesApatityRussia

Personalised recommendations