Russian Journal of Pacific Geology

, Volume 12, Issue 2, pp 81–92 | Cite as

Hydrocarbon Potential of Paleo- and Modern Suprasubduction Provinces: Tectonic, Geodynamic, Mineralogical-Geochemical, and Biochemical Aspects

  • Yu. N. Raznitsin
  • G. N. Savelieva
  • M. A. Fedonkin


The paper is devoted to the integrated analysis of the interdisciplinary problem of the genesis of hydrocarbon potential in suprasubduction provinces. A geodynamic model is proposed for the formation of petroleum pools on the shelves of the Meso-Cenozoic back-arc basins in the western Pacific Ocean. Original data on the tectonics and composition of the mantle peridotites of the Polar Ural ophiolite complexes are given for comparison. These data are used to consider the low-temperature lizardite–chrysotile and high-temperature antigorite types of peridotite serpentinization in the back-arc basins and in the mantle wedges above the subduction zones of the paleozoic Paleouralian ocean. It is established that these processes are responsible for the abiogenic synthesis of hydrogen and methane. Of great theoretical and applied importance are the conclusions concerning the high antiquity of serpentinization as a hydrogen source, the possible relationships of the origin of life and its early evolution with hydrogen emission in the benthal, the predominance of chemoautotrophic prokaryotes with hydrogen exchange among the primary producers of organic matter in anaerobic conditions, and the high probability of naphthidogenesis based on the prokaryotic communities in the Archean and Proterozoic. The origin of hydrocarbons in the framework of the considered model is regarded from a viewpoint of a polygenetic paradigm of oil and gas generation.


serpentinization peridotites abiogenic hydrocarbons ophiolites backarc basins suprasubduction setting shelf ocean oceanic lithosphere 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. A. Belousova, V. G. Batanova, G. N. Savel’eva, and A. V. Sobolev, “Evidence for the suprasubduction origin of mantle section rocks of Voykar ophiolite, Polar Urals,” Dokl. Earth Sci. 421 (2), 1394–1398 (2009).CrossRefGoogle Scholar
  2. 2.
    N. A. Bogdanov, Tectonics of Deep-Water Basins of Marginal Seas (Nedra, Moscow, 1988) [in Russian].Google Scholar
  3. 3.
    Yu. A. Bogdanov, Hydrothermal Manifestations of the Mid-Atlantic Ridge (Nauch. mir, Moscow, 1997) [in Russian].Google Scholar
  4. 4.
    B. M. Valyaev, G. A. Titkov, and M. Yu. Chudetskii, “Genesis of isotopically light (8'3S, 5D) methane of petroleum reservoirs,” in Earth’s Degassing and Genesis of Hydrocarbon Fluids and Reservoirs, (GEOS, Moscow, 2002), pp. 108–134 [in Russian].Google Scholar
  5. 5.
    All-Russian Conference on Endogenous Genesis of Oil and Gas, 5th Kudryavtsev Readings (TSGE, Moscow, 2016) [in Russian]. http://conference. Scholar
  6. 6.
    V. P. Gavrilov, Geodynamics. College Textbook (MAKS Press, Moscow, 2007) [in Russian].Google Scholar
  7. 7.
    M. A. Goncharov, N. V. Koronovskii, Yu. N. Raznitsin, and V. B. Svalova, “Mantle diapirism and the formation of newly formed basins and surrounding centrifugally vergence orogens in the Mediterranean and Caribbean regions,” Geotectonics, 49 (6), 547–559 (2015).CrossRefGoogle Scholar
  8. 8.
    L. V. Dmitriev, B. A. Bazylev, S. A. Silant’ev, M. V. Borisov, S. Yu. Sokolov, and A. Bugo, “Formation of hydrogen and methane during serpentinization of mantle oceanic ultrabasites and oil origin,” Ross. Zh. Nauk O Zemle 1 (6), 1–13 (1999).Google Scholar
  9. 9.
    A. N. Dmitrievskii, “Polygenesis of oil and gas,” Dokl. Earth Sci. 419, 373–377 (2008).CrossRefGoogle Scholar
  10. 10.
    K. S. Ivanov, Yu. N. Fedorov, Yu. V. Erokhin, V. G. Kucherov, L. A. Petrov, O. E. Pogromskaya, A. B. Shishmakov, and K. Sh. Bitlov, “Oil as a product of ultrabasite mantle,” Proceedings of 3rd International Conference on “Ultrabasite–Basite Complexes of Folded Areas and Related Deposits, Russia, 2009 (Tyumen–Novosibirsk, 2009), pp. 200–202 [in Russian].Google Scholar
  11. 11.
    K. S. Ivanov, “Experimental test: whether the presence of biomarkers in oil is a proof of their organic nature? (no, it is not!)" in 5rd Kudryavtsev Readings: All-Russian Conference on Endogenous Genesis of Oil and Gas (TsGE, Moscow, 2016) [in Russian]. //conference. Scholar
  12. 12.
    Map of Anomalous Magnetic Field of Russian and Adjacent Water Basins. 1: 5000000 (VSEGEI, St. Petersburg, 2004) [in Russian].Google Scholar
  13. 13.
    A. L. Knipper, “Ophiocalcite and some other breccia types accompanying pre-orogenic emplacement of ophiolite complex,” Geotektonika, No. 2, 50–63 (1978).Google Scholar
  14. 14.
    V. A. Krayushkin, “Abiogenic petroleum potential of modern spreading centers of teh World Ocean floor,” Geol. Polez, Iskop. Mirovogo Okeana, No. 3, 19–39 (2008).Google Scholar
  15. 15.
    A. Yu. Lein and A. M. Sagalevich, “Smokers of the Rainbow field, the area of large-scale abiogenic methane synthesis,” Priroda (Moscow, Russ. Fed.), No. 8, 44–53 (2000).Google Scholar
  16. 16.
    A. Sh. Nasybullina, E. V. Pivsaeva, and F. F. Khamiddulina, “Study of composition and rheological properties of Sakhalin oils for solution of their transportation problem,” http: Scholar
  17. 17.
    A. I. Obzhirov, A. S. Astakhov, and N. V. Astakhova, “Genesis and conditions of formation of authigenous carbonates in the Quarternary sedimentary cover in the region of the Sakhalin–Deryugin gas anomaly (Sea of Okhotsk),” Oceanology 40 (2), 258–266 (2000).Google Scholar
  18. 18.
    A. N. Obzhirov, I. K. Pushchin, and E. V. Korovitskaya, “Distribution of hydrogen and hydrocarbon gases in the Tonga System,” Tikhookean. Geol. 31 (4), 87–92 (2012).Google Scholar
  19. 19.
    A. N. Obzhirov, R. B. Shakirov, E. V. Mal’tseva, A. I. Gresov, N. S. Syrbu, and A. K. Okulov, “Distribution of methane in water and bottom sediments on the eastern Sakhalin coast, shelf, and slope of the Sea of Okhotsk,” Vestn. DVO RAN, No. 6, 32–41 (2012).Google Scholar
  20. 20.
    Explanatory Note to the Tectonic Map of the Sea of Okhotsk Region. 1: 2500000 (Inst. Litosfery Okrainnykh Vnutrennikh Morei RAN, Moscow, 2000) [in Russian].Google Scholar
  21. 21.
    V. N. Puchkov, Geology of the Urals and Cis-Urals: Urgent Problems of Stratigraphy, Tectonics, Geodynamics, and Metallogeny (DizainPoligrafServis, Ufa, 2010) [in Russian].Google Scholar
  22. 22.
    Yu. N. Raznitsin, Ophiolite Allochthons and Adjacent Deep-Water Basins on the Western Pacific (Nauka, Moscow, 1982) [in Russian].Google Scholar
  23. 23.
    Yu. N. Raznitsin, “The role of tectonic lithosphere delamination for the formation of hydrothermal fields and methane plumes related to the ultramafic rocks in the Atlantic Ocean,” Geotectonics, 37 (6),435–447 (2003).Google Scholar
  24. 24.
    Yu. N. Raznitsin, Tectonic Lithosphere Delamination of the Young Oceans and Paleobasins (Nauka, Moscow, 2004) [in Russian].Google Scholar
  25. 25.
    Yu. N. Raznitsin, Geodynamics of tectonic pairs ophilite allochthon–adjacent deep-water basins and formation of hydrocarbon fields in the western Pacific Ocean," in Proceedings of 19th International Conference (School) on Marine Geology (GEOS, Moscow, 2011), p. 101 [in Russian].Google Scholar
  26. 26.
    Yu. N. Raznitsin, “Geodynamics of ophiolites and formation of hydrocarbon fields on the shelf of Eastern Sakhalin,” Geotectonics, 46 (1), 1–15 (2012).CrossRefGoogle Scholar
  27. 27.
    Yu. N. Raznitsin, “The Petroleum potential and a geodynamic model for the formation of hydrocarbon accumulations on the southern shelf of Cuba,” Dokl. Earth Sci. 456, 685–688 (2014).CrossRefGoogle Scholar
  28. 28.
    G. N. Savelieva, Gabbro–Ultrabasite Complexes of the Urals and their Analogs in the Modern Oceanic Crust (Nauka, Moscow, 1987).Google Scholar
  29. 29.
    G. N. Savelieva, A. V. Sobolev, and V. G. Batanova, “Oceanic complexes of the Polar Urals in the fold framing of the Westen Siberian basin,” in Proceedings of All-Russian Conference with International Participation on the “Basement, Structure, of Framing of the Western Siberian Mesocenozoic Sedimentary Basin, their Geodynamic Evolution and Petroleum Problems, Tyumen, Russia, 2008 (Tyumen–Novosibirsk, 2008), pp. 179–181 [in Russian].Google Scholar
  30. 30.
    G. N. Savelieva, Yu. N. Raznitsin, and M. V. Merkulova, “Metamorphism of peritotites in the mantle wedge above the subduction zone: hydration of the lithospheric mantle,” Dokl. Earth Sci. 468 (1), 438–440 (2016).CrossRefGoogle Scholar
  31. 31.
    S. A. Silantyev, N. V. Mironenko, and A. A. Novoselov, “Hydrothermal systems in peridotites of slow-spreading mid-oceanic ridges. Modeling phase transitions and material balance: downwelling limb of a hydrothermal circulation cell,” Petrology 17, 138–157 (2009).CrossRefGoogle Scholar
  32. 32.
    O. G. Sorokhtin, Earths’ Life (Inst. Komp. Issled., Izhevsk–Moscow, 2007) [in Russian].Google Scholar
  33. 33.
    M. A. Fedonkin, “Role of hydrogen and metals in the development and evolution of metabolic systems,” in Problems of Origination and Evolution of Biosphere (Librokom, Moscow, 2008) [in Russian].Google Scholar
  34. 34.
    V. V. Kharakhinov, Petroleum Geology of the Sakhalin Region (Nauch. mir, Moscow, 2010) [in Russian].Google Scholar
  35. 35.
    V. E. Khain, Tectonics of Continents and Oceans (2000) (Nauch. mir, Moscow, 2001) [in Russian].Google Scholar
  36. 36.
    V. V. Cherepanov, V. V. Rybal’chenko, and G. N. Gogonenkov, “Mesozoic basement—a promising direction for hydrocarbon prospecting on the Sakhalin shelf,” Geol. Nefti Gaza, No. 6, 34–45 (2013).Google Scholar
  37. 37.
    R. B. Shakirov, N. S. Syrbu, and A. I. Obzhirov, “Isotope-geochemical peculiarities of methane and carbon dioxide distribuition on Sakhalin Island and adjacent areas,” Vesti. KRAUNTs. Nauki O Zemle, No. 2, 100–113 (2012).Google Scholar
  38. 38.
    V. Batanova, I. Belousova, G. Savelieva, and A. Sobolev, “Consequences of channelised and diffuse melt transport in supra-subduction mantle: evidence from Voykar Ophiolite (Polar Urals),” J. Petrol 52 (12), 2483–2521 (2011).CrossRefGoogle Scholar
  39. 39.
    E. Bonatti, C. Emilliani, G. Ferrara, J. Honnorez, H. Rydell, “Ultramafic–carbonate breccias from the equatorial Mid-Atlantic Ridge,” Mar. Geol. 17, 83–102 (1974).CrossRefGoogle Scholar
  40. 40.
    G. D. Bromiley and A. R. Pawley, “The stability of antigorite in systems MgO–SiO2–H2O–(MSH) and MgO–A12O3–SiO2–H2O (MASH): the effects of Al3+ substitution on high-pressure stability,” Am. Mineral. 88, 99–108 (2003).CrossRefGoogle Scholar
  41. 41.
    Carbon in the Earth, Rev. Mineral. Geochem. Miner. Soc. Amer., Geochem. Soc. 75, (2013).Google Scholar
  42. 42.
    A. C. Curtis, C. G. Wheat, P. Frier, and G. L. Mayer, “Mariana forearc serpentinite mud volcanoes harbor novel communities of extramorphic Arhaea,” Geomicrobiol. J. 30, 430–441 (2013).CrossRefGoogle Scholar
  43. 43.
    "Lizardite versus antigorite serpentinite: magnetite, hydrogen, and life (?)," Geology 38, 879–882 (2010).Google Scholar
  44. 44.
    P. Fryer, J. Gharib, K. Ross, I. Savov, and M. J. Motd, “Variability in serpentinite mudflow mechanisms and sources: ODP drilling results on Mariana forearc seamounts,” Geochem., Geophys., Geosyst, Q08014 (2006).Google Scholar
  45. 45.
    T. V. Gerya and D. A. Yuen, “Rayleigh–Taylor instabilities from hydration and melting propel "cold plumes” at subduction zones," Earth Planet. Sci. Lett. 212, 47–62 (2003).CrossRefGoogle Scholar
  46. 46.
    C. R. German, A. Bowen, M. L. Coleman, D. L. Honig, J. A. Huber, M. Y. Jakuba, J. C. Kinsey, S. Leroy, J. M. McDermott, B. Merrier De Leping, K. Nakamura, J. S. Seewald, J. L. Smith, S. P. Sylva, C. L. Van Dover, L. L. Whitcomb, and D. R. Yoeger, “Divers styles of submarine venting on the ultraslow spreading Mid-Cayman Rise,” Proc. Nat. Acad. Sci. USA 107 (32), 14020–14025 (2010).CrossRefGoogle Scholar
  47. 47.
    S. Guillot, S. Schwartz, B. Reynard, Ph. Agard, and C. Prigent, “Tectonic significance of serpentinites,” Tectonophysics 646, 1–19 (2015).CrossRefGoogle Scholar
  48. 48.
    B. R. Hacker, G. A. Peacock Abers, and S. D. Holloway “Subduction factory. 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?,” J. Geophys. Res. 108 (B1), (2003). doi 10.1029/ 2001JB001129Google Scholar
  49. 49.
    D. S. Kelley, J. A. Karson, G. L. Friih-Green, D. R. Yoerger, T. M. Shank, D. A. Butterfield, J. M. Hayes, M. O. Schrenk, E. J. Olson, G. Proskurowski, M. Jakuba, A. Bradley, K. Ludwig, D. Glickson, K. Buckman, A. S. Bradley, W. J. Brazelton, K. Roe, M. J. Elend, A. Delacour, S. M. Bemasconi, M. D. Lilley, J. A. Baross, R. E. Summons, and S. P. Sylva, “A serpentinitehosted ecosystem: the Lost City hydrothermal field,” Science 307 (5714), 1420–1422 (2005).CrossRefGoogle Scholar
  50. 50.
    J. W. Levis, “Occurrence of oil in igneous rocks of Cuba,” Bull. Amer. Assoc. Petrol. Geol 6 (8), 809–818 (1932).Google Scholar
  51. 51.
    C. Marcaillou, M. Munoz, O. Vidal, and M. Harfouche, “Mineralogical evidence for H, degassing during serpentinization at 300C/300 Bar,” Earth Planet. Sci. Lett. 303, 281–290 (2011).CrossRefGoogle Scholar
  52. 52.
    J. Milsom, J. Barretto, N. Aguda, D. Bringas, R. Ho, J. Aitchison, “The gravity fields of Palawan and New Caledonia: insights into the subsurface geometries of ophiolites,” J. Geol. Soc. 166, 985–988 (2009).CrossRefGoogle Scholar
  53. 53.
    K. Murata, H. Maekava, H. Yokose, K. Yamamoto, K. Fujioka, H. Chiba, and Y. Wada, “Significance of serpentinization of wedge mantle peridotites beneath Mariana Forearc, Western Pacific,” Geosphere 5, 90–104 (2009).CrossRefGoogle Scholar
  54. 54.
    A. Nicolas, F. Boudier, and J. Bochez, “Interpretation of peridotite structures from ophiolitic and oceanic environments,” Am. J. Sci 279, 192–210 (1979).Google Scholar
  55. 55.
    J. A. Padron-Navarta, V. L. Sanchez-Vizchaino, C. J. Garrido, and M-T. Gomez-Pugnaire, “Metamorphic record of high-pressure dehydration of antigorite serpentinite to chlorite harzburgite in a subduction setting (Cerro del Almirez, Nevado-Filabride Complex, Southern Spain),” J. Petrol. 52 (10), 2047–2078 (2011).CrossRefGoogle Scholar
  56. 56.
    F. Rossetti, J. Glodny, and M. Maggi, “Pressure–temperature–deformation–time of the ductile Alpine shearing in Corsica: from erogenic construction to collapse,” Lithos, 218-219, 99–116 (2015).CrossRefGoogle Scholar
  57. 57.
    M. Schulte, D. Blake, and T. McCollom, “Serpentinization and its implications for life on the Early Earth and Mars,” Astrobiology 6 (2), 364–376 (2006).CrossRefGoogle Scholar
  58. 58.
    N. H. Sleep, A. Meibom, Th. Fridricsson, R. G. Coleman, and D. K. Bird, “-Rich fluids from serpentinization: geochemical and biotic implications,” Proc. Natl. Acad. Sci. USA 101 (35), 12818–12823 (2004).CrossRefGoogle Scholar
  59. 59.
    V. Trommsdorff, V. Lopez Sanchez-Vizcano, M. T. Gomez-Pugnair, and O. Muntener, “High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain,” Contrib. Mineral. Petrol. 132, 139–148 (1998).CrossRefGoogle Scholar
  60. 60.
    K. Vogt and T. V. Gerya, “Deep plate serpentinization triggers skinning of subducting slabs,” doi 10.1130/G355656.1Google Scholar
  61. 61.
    C. G. Wheat, P. Fryer, K. Takai, and S. Hulme, “Spotlight 9: South Chamorro Seamount,” Oceanography 23 (1), 174–175 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. N. Raznitsin
    • 1
  • G. N. Savelieva
    • 1
  • M. A. Fedonkin
    • 1
  1. 1.Geological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations