Russian Journal of Pacific Geology

, Volume 12, Issue 2, pp 135–150 | Cite as

The Problems of Seismic Risk Prediction for the Territory of the Lower Amur Region: Paleoseismogeological and Seismological Analysis

  • A. N. Ovsyuchenko
  • S. V. Trofimenko
  • S. S. Novikov
  • A. N. Didenko
  • V. S. Imaev


The studied region is located at the junction between the Pacific and Central Asian seismoactive belts. Macroseismic data on earthquakes of this region are available for the last 150 years, while instrumental seismological observations began in the mid-20th century; however, the recurrence interval of strong earthquakes can be up to several centuries and even thousands of years. In this respect, many areas of the Amur region had been believed to be nearly aseismic until earthquakes occurred there. Paleoseismogeological studies of recent years have allowed the character of Holocene displacements to be estimated for some of the main regional structures. As a result, the main tendencies of the Late Quaternary geological evolution of the region remain uncertain and the potential seismogenerating structures are not completely known. Therefore the problem of revealing new zones and periods of seismic activity is topical for the entire Amur region. The importance of this problem is related to the weak degree of study of the region by contemporary methods of active tectonics, the intensive development of engineering infrastructure, which is vulnerable to seismic impacts, and the necessity of long-term seismic forecasting. The present work provides the results of paleoseismogeological studies of the active faults in the Amur region. On the basis of new data on the magnitude potential of seismogenerating structures based on the magnitudes of historical earthquakes and instrumentally recorded ones, we have estimated the seismic effects from strong deep-focus earthquakes and the attenuation coefficients and calculated radii of the first three isoseismals for crustal earthquakes. By using the methods of statistical modeling, we distinguish the periods when seismic effects increased from earthquakes with 2 ≤ M ≤ 6. It is shown that seismic hazard assessment should take into account the dynamics of the seismic regime, caused by the change of the earthquake source depth. It is found that the epicenters of earthquakes with 5 ≤ M ≤ 6 form non-crossing seismic zones in different phases of changes in the Earth’s annual rotation.


earthquakes models of seismicity active faults paleoseismogeological investigations seismic hazard Amur region Russian Far East 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Akhmet’ev, V. D. Ovchininskii, and I. S. Stolyarov, Geological Map of the USSR. 1: 200000. Lower Amur Series, Sheet M-54-Sh: Explanatory Notes (VGGU, 1970) [in Russian].Google Scholar
  2. 2.
    V. G. Bykov, V. A. Bormotav, A. A. Kokovkin, M.N. Luneva, T. V. Merkulova, and F. S. Onukhov, “Seismogeodynamics, active tectonic structures, and seismic processes in East Asia,” in Environmental and Climatic Changes. Volume. 1. Seismic Processes and Catastrophes (IFZ RAN, Moscow, 2008), pp. 43–65 [in Russian].Google Scholar
  3. 3.
    V. G. Varnavskii, Geodynamics of Cenozoic Petroleum Sedimentary Basins of Active Continental Margins (Nauka, Moscow, 1994) [in Russian].Google Scholar
  4. 4.
    A. A. Vrublevskii, F. S. Onukhov, F. G. Korchagin, Chin Chun-tszin, L. A. Izosov, Duan Zhui Yan, and He Gonu, “Tectonic zoning and deep-seated heterogeneity of adjacent areas of eastern Russia and China,” Vestn. DVO RAN, No. 3, 7–21 (1996).Google Scholar
  5. 5.
    Geodynamics, Magmatism, and Metallogeny of East Russia, Ed. by A.I. Khanchuk (Dal’nauka, Vladivostok, 2006) [in Russian].Google Scholar
  6. 6.
    Geological Map of the Amur Region and Adjacent Territories. 1:2 500 000, Ed. by L. I. Krasnyi, A. S. Vol’skii, I. A. Vasil’ev, Yu. Pen, Ya. Syui, and I. Van (VSEGEI, MGMR KNR, Blagoveshchensk–Kharbin, 1999) [in Russian].Google Scholar
  7. 7.
    S. V. Gorkusha, F. S. Onukhov, and F. G. Korchagin, “Seismicity and neotectonics of the southern Russian Far East,” Tikhookean. Geol., No. 5, 61–68 (1999).Google Scholar
  8. 8.
    State Geological Map of the Russian Federation. 1: 1000000 (New Series). Sheet M-(53), 54, (55)-Khabarovsk: Explanatory Notes, (VSEGEI, St. Petersburg, 1994) [in Russian].Google Scholar
  9. 9.
    N. N. Gor’kavyi, Yu. A. Trapeznikov, and A. M. Fridman, “On the global component of the seismic process and its relation with observed features of the Earth’s rotation,” Dokl. Akad. Nauk 338 (4), 525–527 (1994).Google Scholar
  10. 10.
    N. N. Gor’kavyi, L. S. Levitskii, T. N. Taidakova, et al., “On correlation of plots of angular speed of the Earth’s rotation and module of its temporal derivatives with earthquake frequency depending on their magnitude,” Fiz. Zemli, No. 10, 33–38 (1994).Google Scholar
  11. 11.
    A. N. Didenko, B. C. Zakharov, and G. Z. Gil’manova, T. V. Merkulova, and M. V. Arkhipov, “Formalized analysis of crustal seismicity of the Sikhote-Alin orogen and adjacent areas,” Russ. J. Pac. Geol., 11 (2), 123–133 (2017).CrossRefGoogle Scholar
  12. 12.
    V. Yu. Zabrodin, O. V. Rybas, and G. Z. Gil’manova, Fault Tectonics of the Continental Part of the Russian Far East (Dal’nauka, Vladivostok, 2015) [in Russian].Google Scholar
  13. 13.
    B. A. Ivanov, Central Sikhote-Alin Fault (Dal’nevost. kn. izd-vo, Vladivostok, 1972) [in Russian].Google Scholar
  14. 14.
    A. I. Ivashchenko, L. N. Poplavskaya, Ch. U. Kim, and T. V. Nagornykh, “Stressed state of the Earth’s crust of Sakhalin Island during preparation, manifestation, and development of source zones of strong earthquakes,” in Dynamics of Source Zones and Prediction of Strong Earthquakes of the Northwestern Pacific Ocean (IMGiG DVO RAN, Yuzhno-Sakhalinsk, 2001), Vol. 1, pp. 5–22 [in Russian].Google Scholar
  15. 15.
    B. C. Imaev, L. P. Imaeva, B. M. Koz’min, and A. L. Strom, “Seismotectonic deformation of the central part of the Aldan Shield,” Otechestvennaya Geol., No. 5, 84–89 (2010).Google Scholar
  16. 16.
    L. P. Imaeva, B. C. Imaev, O. P. Smekalin, B. M. Koz’-min, N. N. Grib, and A. V. Chipizubov, Seismotecctonic Map of East Siberia (TI (f) SVFU, Neryungri–Irkutsk, 2015) [in Russian].Google Scholar
  17. 17.
    Map of the Modern Vertical Movements of the Earth’s Crust at the USSR Territory. 1: 15000 000 (GUGK SSSR, Moscow, 1989) [in Russian].Google Scholar
  18. 18.
    A. I. Kozhurin, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (GIN RAN, Moscow, 2013).Google Scholar
  19. 19.
    Kulakov, F.M., Supervisor Control of the Manipulation Robots (Nauka, Moscow, 1980).Google Scholar
  20. 20.
    B. V. Levin, Kim Chun Un, T. V. Nagornykh, “Seismicity of Primorye and Amur Region in 1888–2008,” Vesti. DVO RAN, No. 6, 16–22 (2008).Google Scholar
  21. 21.
    N. N. Leonov, I. I. Bersenev, R. I. Grishkyan, et al., “Seismic zoning of Primorye and Amur Region,” in Seismic Zoning of the Kuril Islands, Amur and Primorye (DVNTs AN SSSR, Vladivostok, 1977), pp. 143–155 [in Russian].Google Scholar
  22. 22.
    V. L. Lomtev, S. P. Nikiforov, and Chun Un Kim, “Tectonic aspects of the crustal seismicity of Sakhalin,” Vestn. DVO RAN, No. 4, 64–71 (2007).Google Scholar
  23. 23.
    V. L. Lomtev, “Deformations of the August 2, 2007 Nevel’sk Shelf Earthquake (M ~ 6.1),” SW. Sakhalin, Geol. Polezn. Iskop. Mirovogo Okeana, No. 2, 35–47 (2010).Google Scholar
  24. 24.
    Yu. F. Malyshev, “Deep structure, geodynamics and seismicity in the junction zone of the Central Asian and Pacific mobile belts,” Tikhookean. Geol., No. 2, 18–27 (1998).Google Scholar
  25. 25.
    G. V. Masibroda, V. M. Nikol’skii, V. G. Varnavskii, and A. I. Pozdnyakova, Geological Map of the USSR. 1: 200000. Sikhote Alin Series. Sheet M-53-XXXIV. Explanatory Notes (DVGTU, Vladivostok, 1980) [in Russian].Google Scholar
  26. 26.
    V. M. Nikiforov, I. V. Dmitriev, and S. S. Starzhinskii, “Deep geoelectric structure and seismicity of Primorye, Far East,” Tikhookean. Geol. 25 (4), 18–25 (2006).Google Scholar
  27. 27.
    V. V. Nikolaev, P. M. Semenov, L. S. Oskorbin, et al., Sesimotectonics and Seismic Zoning of the Amur Region, Ed. by V. P. Solonenko (Nauka, Novosibirsk, 1989) [in Russian].Google Scholar
  28. 28.
    V. V. Nikolaev, A. A. Vrublevskii, V. A. Akhmadulin, and V. B. Kuznetsov, Geodynamics and Seismic Zoning of the Far East Continental Part (DVO RAN, Vladivostok, 2000) [in Russian].Google Scholar
  29. 29.
    A. N. Ovsyuchenko, S. V. Trofimenko, A. V. Marakhanov, P. S. Karasev, E. A. Rogozhin, B. C. Imaev, V. M. Nikitin, and N. N. Grib, “Detailed geological–geophysical studies of active fault zones and the seismic hazard in the South Yakutsk region,” Russ. J. Pac. Geol. 3 (4), 356–373 (2009).CrossRefGoogle Scholar
  30. 30.
    A. N. Ovsyuchenko, S. S. Novikov, and A. V. Marakhanov, “New data on active faults of the lower Amur region,” in Faulting and Seismicity in the Lithosphere: Tectonophysical Concepts and Consequences (IZK SO RAN, Irkutsk, 2009), Vol. 1, pp. 183–185 [in Russian].Google Scholar
  31. 31.
    A. N. Ovsyuchenko, S. V. Trofimenko, A. V. Marakhanov, P. S. Karasev, and E. A. Rogozhin, “Source zones of strong earthquakes in Southern Yakutia as inferred from paleoseismological data,” Izv. Phys. Solid Earth 45 (2), 101–117 (2009).CrossRefGoogle Scholar
  32. 32.
    A. N. Ovsyuchenko, S. V. Trofimenko, A. V. Marakhanov, P. S. Karasev, and E. A. Rogozhin, “Seismotectonics of the transitional region from the Baikal rift zone to orogenic rise of the Stanovoi Range,” Geotectonics, 48 (1), 25–44 (2010).CrossRefGoogle Scholar
  33. 33.
    A. N. Ovsyuchenko, A. V. Marakhanov, R. N. Vakarchuk, A. S. Lar’kov, S. S. Novikov, and E. A. Rogozhin, “Geological and macroseismic manifestations of the October 16, 2011 Earthquake in the Skovorodinsk area of the Amur region,” Vopr. Inzh. Seismol. 39 (4), 5–18 (2012).Google Scholar
  34. 34.
    A. N. Ovsyuchenko, A. V. Kalinina, S. M. Ammosov, R. N. Vakarchuk, S. S. Novikov, A. S. Lar’kov, and A. V. Marakhanov, “Application of MASW seismic survey in seismotectonic studies with reference to the Russian Far East,” Inzh. Izysk., No. 2, 38–48 (2013).Google Scholar
  35. 35.
    A. V. Oleinikov and N. A. Oleinikov, Geological Signs of Seismicity and Paleoseismology of South Primorye (Dal’nauka, Vladivostok, 2001) [in Russian].Google Scholar
  36. 36.
    A. V. Oleinikov and N. A. Oleinikov, Paleoseismogeologiya (Dal’nauka, Vladivostok, 2009) [in Russian].Google Scholar
  37. 37.
    N. M. Organova, “Seismic manifestation of the modern movements of the southern Far East and adjacent areas,” in Modern Movements of the Earth’s Crust (Radio i svyaz', Moscow, 1982), pp. 103–108 [in Russian].Google Scholar
  38. 38.
    L. S. Oskorbin, “Seismogenic zoning of the southern Far East,” in Geodynamics of the Tectonosphere of the Pacific–Eurasia Junction Zone. Volume 4. Problems of Seismic Hazard of the Far East Region (IMGiG DVO RAN, Yuzhno-Sakhalinsk, 1997), pp. 111–153 [in Russian].Google Scholar
  39. 39.
    Paleoseismology,, Ed. by Dzh.P. McCalpin (Elsevier, San Diego, 2009) [in Russian].Google Scholar
  40. 40.
    A. N. Perestoronin and E. P. Razvozzhaeva, “The system of Cenozoic depressions in the Amur and Primorye regions: the structure, tectonic position, and geodynamic interpretation,” Russ. J. Pac. Geol. 5 (2), 139–154 (2011).CrossRefGoogle Scholar
  41. 41.
    E. A. Rogozhin, A. N. Ovsyuchenko, S. V. Trofimenko, A.V. Marakhanov, and P. S. Karasev, “Seismotectonics of the junction zone between the Baikal rift zone and orogenic rise of the Stanovoi Range,” Geofiz. Issled, No. 8, 81–116 (2007).Google Scholar
  42. 42.
    E. A. Rogozhin, A. N. Ovsyuchenko, and A. I. Lutikov, A. L. Sobisevich, L. E. Sobisevich, and A. V. Gorbatikov, Endogenous Hazard of the Greater Caucasus (IFZ RAN, Moscow, 2014) [in Russian].Google Scholar
  43. 43.
    S. A. Salun, Tectonics and Evolution of the Sikhote-Alin Geosynclinal Fold System (Nedra, Moscow, 1978), p. 183 [in Russian].Google Scholar
  44. 44.
    V. G. Sakhno, The Youngest and Modern Volcanism of Southern Far East (Dal’nauka, Vladivostok, 2008) [in Russian].Google Scholar
  45. 45.
    O. P. Smekalin, B. C. Imaev, and A. V. Chipizubov, Paleoseismology of East Siberia: Some Experience of Practical Application (IZK SO RAN, Irkutsk, 2011) [in Russian].Google Scholar
  46. 46.
    A. V. Solomatin, “Compilation of refined model of the macroseismic field equation for the Kurile–Kamchatka region. Interpolation and regression approaches,” Vestn. KRAUNTs. Fiz.-Mat. Nauki, No. 1, 30–42 (2013).Google Scholar
  47. 47.
    V. P. Solonenko, “Determination of epicentral earthquake zones from geological signs,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 11, 58–74 (1962).Google Scholar
  48. 48.
    M. I. Strel’tsov and B. C. Rozhdestvenskii, “Active faults of the Kurile–Okhotsk region, Sakhalin, Primorye, and Amur region,” in Seismicity and Seismic Zoning of Northern Eurasia (OIFZ RAN, Moscow, 1995), Nos. 2−3, pp. 387–407 [in Russian].Google Scholar
  49. 49.
    V. Yu. Timofeev, P. Yu. Gornov, D. G. Ardyukov, et al., “GPS Measurements (2003–2006) in the Sikhote Alin Network, the Far East,” Russ. J. Pac. Geol. 2 (4), 314–324 (2008).CrossRefGoogle Scholar
  50. 50.
    S. V. Trofimenko, “Tectonic interpretation of statistical model of distribution of azimuths of gravity anomaly fields of the Aldan Shield,” Tikhookean. Geol., 2010, vol. 29, no. 3, 64–77 (2010).Google Scholar
  51. 51.
    S. V. Trofimenko, V. G. Bykov, and I. I. Kolodeznikov, “Spatial distribution of earthquake epicenters of the northeastern segment of the Amur miroplate and different phases of the Earth’s rotation,” Nauka Obrazovanie, 2015, No. 4 (80), pp. 41–44.Google Scholar
  52. 52.
    S V. Trofimenko, “Tectonic model of seismicity for the northeastern segment of the Amur Plate in the Earth’s two-phased rotation,” Russ. J. Pac. Geol. 10 (6), 427–434 (2016).CrossRefGoogle Scholar
  53. 53.
    S. V. Trofimenko and V. G. Bykov, “Spatiotemporal distributions of earthquakes in the northeastern segment of the Amur Plate in two phases of variations in the modulus of the Earth’s rotation rate,” J. Volcanol. Seismol., 11 (2), 143–155. (2017).CrossRefGoogle Scholar
  54. 54.
    G. F. Ufimtsev, Tectonic Analysis of Topography by the Example of USSR East (Nauka, Novosibirsk, 1984) [in Russian].Google Scholar
  55. 55.
    G. F. Ufimtsev, S. N. Alekseenko, and F. S. Onukhov, “Morphotectonics of the Lower Amur region,” Russ. J. Pac. Geol. 3 (6), 585–595 (2009).CrossRefGoogle Scholar
  56. 56.
    A. I. Freidin and Yu. Ya. Livshits, Geological Map of the USSR. 1: 200000. Sikhote-Alin Series, Sheet M-54-VII: Explanatory Note (DVGU, Vladivostok, 1959) [in Russian].Google Scholar
  57. 57.
    A. I. Khanchuk, D. A. Safonov, Ya. B. Radziminovich, et al., “The largest recent earthquake in the Upper Amur region on October 14, 2011: first results of multidisciplinary study,” Dokl. Earth Sci. 445, 916–919 (2012).CrossRefGoogle Scholar
  58. 58.
    N. V. Shebalin, “Assessment of seismic intensity,” in Seismic Scale and Methods of Measurement of Seismic Intensity (Nauka, Moscow, 1975), pp. 87–109 [in Russian].Google Scholar
  59. 59.
    A. Barth and F. Wenzel, “New constraints on the intraplate stress field of the Amurian Plate deduced from light earthquake focal mechanisms,” Tectonophysics 482, 160–169 (2010).CrossRefGoogle Scholar
  60. 60.
    V. G. Bykov and S. V. Trofimenko, “Slow strain waves in blocky geological media from GPS and seismological observations on the Amurian Plate,” Nonlin. Processes Geophys. 23, 467–475 (2016).CrossRefGoogle Scholar
  61. 61.
    Q. Deng, P. Zhang, Y. Ran, et al., “Basic characteristics of active tectonics of China,” Sci. in China. Series D.-Earth Sci. 46 (4), 356–372 (2003).Google Scholar
  62. 62.
    Q. Deng, Active Tectonics Map of China (Earthquake Press, Beijing, 2007).Google Scholar
  63. 63.
    W. Huang, W. Gao, and G. Ding, “Neogene volcanism and Holocene earthquakes in the Tanlu Fault Zone, eastern China,” Tectonophysics 260, 259–270 (1996).CrossRefGoogle Scholar
  64. 64.
    M. Liu, Y. Yang, Zh. Shen, et al., “Active tectonics and intracontinental earthquakes in China: the kinematics and geodynamics,” Geol. Soc. Amer. Spec. Pap. 425, 299–318 (2007).Google Scholar
  65. 65.
    J. Ren, K. Tamaki, S. Li, and Z. Junxia, “Late Mesozoic and Cenozoic rifting in eastern China and adjacent areas,” Tectonophysics 344, 175–205 (2002).CrossRefGoogle Scholar
  66. 66.
    S. V. Trofimenko, V. G. Bykov, and T. V. Merkulova, “Space-time model for migration of weak earthquakes along the northern boundary of the Amurian Microplate,” J. Seismol. (2016). doi 10.1007/sl0950-016-9600-xGoogle Scholar
  67. 67.
    D. L. Wells and K. J. Coppersmith, “New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement,” Bull. Seis. Soc. Am. 84 (4), 974–1002 (1994).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. N. Ovsyuchenko
    • 1
  • S. V. Trofimenko
    • 2
    • 3
  • S. S. Novikov
    • 1
  • A. N. Didenko
    • 2
    • 5
  • V. S. Imaev
    • 4
  1. 1.Schmidt Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia
  2. 2.Kosygin Institute of Tectonics and GeophysicsFar East Branch of the Russian Academy of SciencesKhabarovskRussia
  3. 3.Northeastern Federal UniversityYakutskRussia
  4. 4.Diamond and Precious Metal Geology InstituteSiberian Branch of the Russian Academy of SciencesYakutskRussia
  5. 5.Pacific State UniversityKhabarovskRussia

Personalised recommendations