Lateral density inhomogeneities of the continental and oceanic lithosphere and their relationship with the Earth’s crust formation

  • V. N. Senachin
  • A. A. Baranov


This paper presents the results of the study of the free mantle surface (FMS) depth beneath continents and oceans. The reasons for the observed dependence of the FMS depth on the crustal thickness in the continental lithosphere are discussed. The influence of radial variations in the mantle’s density is evaluated. The calculations performed have indicated that the observed dependence of the FMS depth on the crustal thickness is caused mostly by lateral inhomogeneities in the lithospheric mantle, and the size of these inhomogeneities is proportional to the thickness of the crust. The origin of such inhomogeneities can be related to the process of continental crust formation.


isostasy free mantle surface Earth’s crust lithosphere density inhomogeneities 


  1. 1.
    M. E. Artemjev, Isostasy in the USSR Territory (Nauka, Moscow, 1975) [in Russian].Google Scholar
  2. 2.
    A. A. Baranov, “New Model of the Crust of Central and Southern Asia,” Fiz. Zemli, No. 1, 37–50 (2010).Google Scholar
  3. 3.
    K. C. Burke and J. T. Wilson, “Hots Spots on the Earth’s Surface,” [Sci. Am. 235, 46–57 (1976); Usp. Fiz. Nauk 123 (3), 615–632 (1977)].CrossRefGoogle Scholar
  4. 4.
    O. A. Bogatikov and A. K. Simon, “Magmatism and Geodynamics of the Main Age Stages of the Earth’s Evolution,” Vestn. OGGGGN RAN, No. 2 (1997).Google Scholar
  5. 5.
    E. V. Verzhbitskii, L. I. Lobkovskii, M. V. Kononov, and V. D. Kotelkin, “Genesis of Shatsky and Hess Oceanic Rises in the Pacific Ocean as Deduced from Geologic-Geophysical Data and Numerical Modeling,” Geotectonics 40, 236–245 (2006).CrossRefGoogle Scholar
  6. 6.
    A. E. Ringwood, Composition and Petrology of the Earth’s Mantle (McGraw-Hill, New York, 1975; Nedra, Moscow, 1981).Google Scholar
  7. 7.
    T. V. Romanyuk, “The Late Cenozoic Geodynamic Evolution of the Central Segment of the Andean Subduction Zone,” Geotectonics 43, 305–323 (2009).CrossRefGoogle Scholar
  8. 8.
    V. N. Senachin, “Free Mantle Surface as Indicator of Geodynamic Processes,” Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, No. 1, 18–25 (2006).Google Scholar
  9. 9.
    V. Senachin and A. Baranov, “Estimation of the Deep Density Distribution in the Lithosphere of Central and Southern Asia Using Data on Free Mantle Surface Depth,” Izv. Phys. Solid Earth 46, 966–973 (2010).CrossRefGoogle Scholar
  10. 10.
    E. V. Sharkov, “Where does the Continental Lithosphere Disappears? (Volcanic Arc-Back-Arc Basin System),” Vestn. OGGGGN RAN 1(2) (2000).
  11. 11.
    E. V. Sharkov and O. A. Bogatikov, “Evolution of the Tectonomagmagic Processes in the Earth’s Evolution,” in Volcanology and Geodynamics. 6th All-Russian Symposium on Volcanology and Paleovolcanology, Petropavlovsk-Kamchatskii, Russia, 2009 (Petropavlovsk-Kamchatskii, 2009), Vol. 1, pp. 38–41 [in Russian].Google Scholar
  12. 12.
    V. E. Khain and M. G. Lomize, Geotectonics with Fundamentals of Geodynamics (Mosk. Gos. Univ., Moscow, 1995) [in Russian].Google Scholar
  13. 13.
    V. E. Khain, “Modern Geodynamics: Achievements and Problems,” Priroda (Moscow, Russ. Fed.), No. 1, 51–59 (2002).Google Scholar
  14. 14.
    I. M. Artemieva, “Global 1.1 Thermal Model TC1 for the Continental Lithosphere: Implications for Lithosphere Secular Evolution,” Tectonophysics 416, 245–277 (2006).CrossRefGoogle Scholar
  15. 15.
    C. Bassin, G. Laske, and G. Masters, “The Current Limits of Resolution for Surface Wave Tomography in North America,” EOS Trans. AGU, 81(48), 81 (2000), Fall Meet. Suppl., Anstr. F897. ( Scholar
  16. 16.
    P. A. Cawood, A. Kroner, W. J. Collins, et al., “Accretionary Orogens through Earth History,” Geol. Soc. London, Spec. Publ. 301, 1–36 (2009).CrossRefGoogle Scholar
  17. 17.
    N. I. Christensen and W. D. Mooney, “Seismic Velocity Structure and Composition of the Continental Crust: a Global View,” J. Geophys. Res. 100(B7), 9760–9788 (1995).Google Scholar
  18. 18.
    Origin and Evolution of the Ontong Java Plateau, Ed. by J. G. Fitton, J. J. Mahoney, P. J. Wallace, and A. D. Saunders, Geol. Soc. London. Spec. Publ. 229, (2004).Google Scholar
  19. 19.
    G. Laske and G. Masters, “A Global Digital Map of Sediment Thickness, EOS Trans,” AGU 78, F483 (1997).Google Scholar
  20. 20.
    Ch. Li, R. D. Hilst, A. S. Meltzer, and E. R. Engdayl, “Subduction of the Indian Lithosphere beneath the Tibetian Plateau and Burma,” Earth Planet. Sci. Lett. 274, 157–168 (2008).CrossRefGoogle Scholar
  21. 21.
    W. D. Mooney, G. Laske, and T. G. Masters, “Crust 5.1: AGlobal Model at 5°-5°,” J. Geophys. Res. 103, 727–747 (1998).CrossRefGoogle Scholar
  22. 22.
    R. D. Muller, W. R. Roest, and R. D. Royer, “Digital Isochrones of the World’s Ocean Floor,” J. Geophys. Res. 102(B2), 3211–3214 (1997).CrossRefGoogle Scholar
  23. 23.
    R. S. Rajesh and D. C. Mishra, “Admittance Analysis and Modelling of Satellite Gravity over Himalayas-Tibet and Its Seismogenic Correlation,” Current Science 84(2), 224–230 (2003).Google Scholar
  24. 24.
    Y. Yang and M. Liu, “Crustal Thickening and Lateral Extrusion during the Indo-Asian Collision: a 3D Viscous Flow Model,” Tectonophysics 465(1–4), 128–135 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Institute of Marine Geology and Geophysics, Far East BranchRussian Academy of SciencesYuzhno-SakhalinskRussia
  2. 2.Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia
  3. 3.International Institute of Earthquake Prediction Theory and Mathematical GeophysicsMoscowRussia

Personalised recommendations