Russian Journal of Pacific Geology

, Volume 1, Issue 5, pp 464–472 | Cite as

Modeling of gold mass transfer during the listwanitization and rodingitization using the example of the Ust’-Dep ophiolite complex in the upper Amur territory

  • L. P. Plyusnina
  • G. G. Likhoidov
  • V. P. Molchanov
  • Zh. A. Shcheka


Gold mass transfer with chloride and carbonate-chloride solutions was examined at the 300 and 400°C isotherms and P tot = 1 kbar by means of experimental modeling and theoretical simulations. CO2 was confirmed to suppress Au solubility in fluids. The low Au solubility (mAu < 10−8) determined in the experiments explains the mechanism of its precipitation when serpentinites and listwanites interact with acidic mineralized solutions. Listwanitization, which was genetically related with the emplacement of orogenic granitoids, was determined to have overprinted serpentinites and rodingites and strongly affected Au transport in the oregeochemical system. The characteristics of the metasomatic processes in the Ust’-Dep ophiolites and the gold concentration in the rocks produced by these processes confirm this conclusion.


ophiolite listwanite rodingite gold experiment thermodynamic simulations Amur territory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. N. Akinfiev and A. V. Zotov, “Thermodynamic Description of the Chloride, Hydrosulphide, and Hydroxo Complexes of Ag (1), Cu (1), and Au (1) at Temperature of 25–500°C and Pressure of 1–2000 bar,” Geokhimiya 39(10), 1083–1099 (2001) [Geochem. Int. 39 (10), 990–1008 (2001)].Google Scholar
  2. 2.
    S. S. Zimin, R. A. Oktyabr’skii, V. P. Molchanov, et al., “Chromite and Native Metal Prospects of Hyperbasites in the Ust’-Dep Ophiolite Zone in the Central Amur Region,” in Ore Deposits of Continental Margins (Dal’nauka, Vladivostok, 2001), Vol. 2, No. 2, pp. 201–232 [in Russian].Google Scholar
  3. 3.
    I. K. Karpov, K. V. Chudnenko, V. A. Bychinskii, et al., “Minimization of the Gibbs Free Energy for Calculating Heterogeneous Equilibria,” Geol. Geofiz. 36, 3–21 (1995).Google Scholar
  4. 4.
    G. R. Kolonin, G. A. Pal’yanova, G. P. Shironosova, and L. G. Morgunov, “The Effect of Carbon Dioxide on Internal Equilibrium in the Fluid during the Formation of Hydrothermal Gold Deposits,” Geokhimiya 35(1), 46–57 (1997) [Geochem. Int. 35 (1), 40–50 (1997)].Google Scholar
  5. 5.
    A. F. Korobeinikov and A. I. Goncharenko, “Gold in Ophiolitic Complexes of the Altai-Sayan Fold Area,” Geokhimiya 24(3), 328–338 (1986).Google Scholar
  6. 6.
    G. G. Likhoidov and I. Ya. Nekrasov, “Gold Solubility in Complex Sulfide-Chloride Fluids at 30–500°C and Pressure = 1 kbar,” Geokhimiya 39(4), 394–403 (2001) [Geochem. Int. 39 (4), 347–355 (2001)].Google Scholar
  7. 7.
    A. G. Mironov, A. I. Al’mukhamedov, V. F. Geletii, et al., Experimental Study of Gold Geochemistry Using Radioactive Isotope Analysis (Nauka, Novosibirsk, 1989) [in Russian].Google Scholar
  8. 8.
    V. G. Moiseenko, Gold Geochemistry and Mineralogy in Far East Ore Regions (Nauka, Moscow, 1977) [in Russian].Google Scholar
  9. 9.
    V. P. Molchanov, S. S. Zimin, R. A. Oktyabr’skii, et al., “Mineral Composition and Gold Mineralization of Listwaenites in the Ust’-Dep Ophiolite Zone (Amur Oblast),” in Ore Deposits of Continental Margins (Dal’Nauka, Vladivostok, 2000), No. 1, pp. 170–180 [in Russian].Google Scholar
  10. 10.
    V. P. Molchanov, L. P. Plyusnina, A. I. Khanchuk, et al., “Platinum-and Gold-Bearing Rodingites of the Ust’Dep Ophiolite Block (Middle Amur Region),” Dokl. Akad. Nauk 406(5), 678–682 (2006) [Dokl. Earth Sci. 407, 250–253 (2006).Google Scholar
  11. 11.
    V. V. Murzin, “Origin of Fluids Responsible for the Formation of Au-Bearing Rodingites Based on Isotope Data: Evidence from the Karabash Alpine-Type Ultramafic Massif, the Southern Urals,” Dokl. Akad. Nauk 406(5), 683–686 (2006) [Dokl. Earth Sci. 407, 254–257 (2006)].Google Scholar
  12. 12.
    M. M. Murzin, V. N. Sazonov, D. A. Varlamov, and S. N. Shanina, “Gold Mineralization in Rodingites from Alpine-type Hyperbasite Massifs,” Litosfera, No. 1, 113–134 (2006).Google Scholar
  13. 13.
    L. P. Plyusnina, I. Ya. Nekrasov, and G. G. Likhoidov, “Petrogenesis of the Rodingites from the Munilkan Ophiolite Block in the Verkhoyansk-Chukotka Fold Area,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 8, 38–50 (1991).Google Scholar
  14. 14.
    L. P. Plyusnina, G. G. Likhoidov, and G. P. Zaraiskii, “Physicochemical Conditions of Rodingite Formation from Experimental Data,” Petrologiya 1(5), 557–568 (1993).Google Scholar
  15. 15.
    L. P. Plyusnina and G. G. Likhoidov, “Contact Interaction between Granitoids and Gabbro and Hyperbasites and Its Effect on Gold and Platinum Mobility,” Tikhookean. Geol. 16(4), 95–101 (1997).Google Scholar
  16. 16.
    L. P. Plyusnina, G. G. Likhoidov, and A. I. Khanchuk, “Gold Solubility in Chloride Solutions Interacting with Epidote Propylites,” Dokl. Akad. Nauk 389(3), 394–397 (2003) [Dokl. Earth Sci. 389A (3), 399–402 (2003)].Google Scholar
  17. 17.
    V. N. Sazonov, V. V. Murzin, V. N. Ogorodnikov, and Yu. A. Volchenko, “Gold Mineralization Associated with Alpine-type Ultrabasites (on Example of the Urals),” Litosfera, No. 4, 63–77 (2002).Google Scholar
  18. 18.
    E. M. Spiridonov and P. A. Pletnev, Zolotaya Gora Cupriferous Gold Deposits (on “Gold-Rodingite Formation”) (Nauchyi Mir, Moscow, 2002) [in Russian].Google Scholar
  19. 19.
    M. Auclair, M. Gauthier, J. Trottier, et al., “Mineralogy, Geochemistry, and Petrogenesis of the Eastern Metals Serpentinite Associated Ni-Cu-Zn Deposit, Quebec Appalachians,” Econ. Geol. Bull. Soc. Econ. Geologists 88(1), 123–138 (1993).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • L. P. Plyusnina
    • 1
  • G. G. Likhoidov
    • 1
  • V. P. Molchanov
    • 1
  • Zh. A. Shcheka
    • 1
  1. 1.Far East Geological Institute, Far East DivisionRussian Academy of SciencesVladivostokRussia

Personalised recommendations