Neurochemical Journal

, Volume 12, Issue 1, pp 9–14 | Cite as

Pathophysiology and Treatment of Peritumoral Brain Edema: Possible Effect of Lidocaine

  • Luisa Piedad Manrique-Carmona
  • Iván Pérez-Neri


Brain tumors account to a great mortality worldwide. Malignant tumors worsen patients’ prognosis due to peritumoral edema which is highly associated with a longer hospital stay and a higher incidence of sequelae. However, also non-malignant tumors develop severe complications. Among them, meningioma represents 53% of the cases. During tumor growth, damage to vascular endothelium increases inflammation; primary neoplastic lesions frequently show a high extent of edema. This is responsible for the associated morbidity and mortality in several pathologies but it is refractory to almost all treatments. The pathophysiological mechanism of this edema is not well understood, but may involve cerebral and vascular compression, as well as hydrodynamic changes. Edema complicates tumor exeresis affecting patients’ outcome so it is essential to achieve an early diagnosis and to perform better management strategies. Transurgical imaging studies are very useful for this purpose but they are not available in every institution. Other methods to detect edema involve direct observation by the surgeon and his/her perception on brain relaxation, although these are subjective measures. Edema treatment includes corticosteroids, mannitol and hypertonic saline but they may cause severe side effects. It should be noticed that many of the intracellular events that are involved in the genesis of brain edema are inhibited by lidocaine, this molecule is a tertiary amine that blocks sodium channels. It has a well described pharmacological profile. For these reasons, this article examines the mechanisms of peritumoral brain edema and their possible pharmacologic interventions with lidocaine.


peritumoral edema lidocaine hyperosmolar solution mannitol tumor prognosis complications outcome treatment improvement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cancer IAfRo (2012). Accessed March 29, 2016.Google Scholar
  2. 2.
    Ostrom, Q.T., Gittleman, H., Liao, P., Rouse, C., Chen, Y., Dowling, J., Wolinsky, Y., Kruchko, C., and Barnholtz-Sloan, J., Neurooncology, 2014, vol. 16 (Suppl. 4), pp. iv1–iv63.Google Scholar
  3. 3.
    INEGI (2016). defunciones.aspx?tema=P. Accessed March 28, 2016.Google Scholar
  4. 4.
    Jiménez-Marcial, M.E. and Velásquez-Pérez, L., Gac. Med. Mex., 2004, vol. 140, pp. 155–162.PubMedGoogle Scholar
  5. 5.
    Alan, N., Seicean, A., Seicean, S., Neuhauser, D., Benzel, E.C., and Weil, R.J., J. Clin. Neurosci., 2015, vol. 22, no. 9, pp. 1413–1419.CrossRefPubMedGoogle Scholar
  6. 6.
    Sherchan, P., Kim, C.H., and Zhang, J.H., Acta Neurochir., 2013, vol. 118, pp. 129–133.Google Scholar
  7. 7.
    Weil, R.J. and Oldfield, E.H., Cerebral edema, Youmans Neurological Surgery, 5 ed., Winn, H.R. and Youmans, J.R., Eds., Philadelphia: Saunders, 2004, pp. 162–168.Google Scholar
  8. 8.
    Newton, H.B. and Ray-Chaudhury, A., Overview of Brain Tumor Epidemiology and Histopathology, Handbook of Brain Tumor Chemotherapy, 1st ed., Newton, H.B., Ed., Amsterdam: Elsevier, 2006, pp. 3–20.Google Scholar
  9. 9.
    Papadopoulos, M.C., Saadoun, S., Binder, D.K., Manley, G.T., Krishna, S., and Verkman, A.S., Neuroscience, 2004, vol. 29, no. 4, pp. 1009–1018.CrossRefGoogle Scholar
  10. 10.
    Weingart, J.D. and Brem, H., Basic Principles of Cranial Surgery for Brain Tumors, Youmans Neurological Surgery, 5 ed., Winn, H.R., and Youmans, J.R., Eds., Philadelphia: Saunders, 2004, pp. 1261–1266.Google Scholar
  11. 11.
    Abbott, N.J., J. Anat., 2002, vol. 200, no. 6, pp. 629–638.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Merrill, M.J. and Oldfield, E.H., J. Neurosurg., 2005, vol. 103, no. 5, pp. 853–868.CrossRefPubMedGoogle Scholar
  13. 13.
    Stover, J.F., Morganti-Kosmann, M.C., Lenzlinger, P.M., Stocker, R., Kempski, O.S., and Kossmann, T., J. Neurotrauma, 1999, vol. 16, no. 2, pp. 135–142.CrossRefPubMedGoogle Scholar
  14. 14.
    Chu, H., Xiang, J., Wu, P., Su, J., Ding, H., Tang, Y., and Dong Q., J. Neuroinflammation, 2014, vol. 11, p.184.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lukic-Panin, V., Kamiya, T., Zhang, H., Hayashi, T., Tsuchiya, A., Sehara, Y., Deguchi, K., Yamashita, T., and Abe, K., Brain Res., 2007, vol. 1176, pp. 143–150.CrossRefPubMedGoogle Scholar
  16. 16.
    Michael, D.B., Byers, D.M., and Irwin, L.N., J. Clin. Neurosci., 2005, vol. 12, no. 3, pp. 284–290.CrossRefPubMedGoogle Scholar
  17. 17.
    Mohammadi, M.T., Shid-Moosavi, S.M., and Dehghani, G.A., Pathophysiology, 2012, vol. 19, no. 1, pp. 13–20.CrossRefPubMedGoogle Scholar
  18. 18.
    Pérez-Neri, I., Bargés-Coll, J., Ramírez-Bermúdez, J., García-López, R., Ojeda-López, C., Méndez-Rosito, D., Ramírez-Abascal, M., Márquez-Flores, M.Á., Nente, F., Avendaño, J., Montes, S., Gómez-Amador, J.L., Moreno-Jiménez, S., Soto-Hernández, J.L., and Ríos, C., Arch. Neurocien, 2011, vol. 16 (Suppl. II), pp. 22–24.Google Scholar
  19. 19.
    Nag, S., Manias, J.L., and Stewart, D.J., Acta Neuropathol., 2009, vol. 118, no. 2, pp. 197–217.CrossRefPubMedGoogle Scholar
  20. 20.
    Bundgaard, H. and Cold, G.E., Br. J. Neurosurg., 2000, vol. 14, no. 3, pp. 229–234.CrossRefPubMedGoogle Scholar
  21. 21.
    Dubois, L.G., Campanati, L., Righy, C., D’Andrea-Meira, I., Spohr, T.C., Porto-Carreiro, I., Pereira, C.M., Balça-Silva, J., Kahn, S.A., DosSantos, M.F., de Oliveira, M.A., Ximenes-da-Silva, A., Lopes, M.C., Faveret, E., Gasparetto, E.L., and Moura-Neto, V., Front. Cell. Neurosci., 2014, vol. 8, p.418.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kröll, S., El-Gindi, J., Thanabalasundaram, G., Panpumthong, P., Schrot, S., Hartmann, C., and Galla, H.J., Ann. NY Acad. Sci., 2009, vol. 1165, pp. 228–239.CrossRefPubMedGoogle Scholar
  23. 23.
    Fathi, A.-R. and Roelcke, U., Curr. Neurol. Neurosci. Rep., 2013, vol. 13, no.4, p.337.CrossRefPubMedGoogle Scholar
  24. 24.
    Hou, J., Kshettry, V.R., Selman, W.R., and Bambakidis, N.C., Neurosurg. Focus, 2013, vol. 35, no. 6, p. E2.CrossRefPubMedGoogle Scholar
  25. 25.
    Bartek, J., Jr., Sjåvik, K., Förander, P., Solheim, O., Gulati, S., Weber, C., Ingebrigtsen, T., and Jakola, A.S., World Neurosurg., 2015, vol. 83, no. 5, pp. 673–678.CrossRefPubMedGoogle Scholar
  26. 26.
    Tamiya, T., Ono, Y., Matsumoto, K., and Ohmoto, T., Neurosurgery, 2001, vol. 49, no. 5, pp. 1046–1052.PubMedGoogle Scholar
  27. 27.
    Bruzzone, M.G., D’Incerti, L., Farina, L.L., Cuccarini, V., and Finocchiaro, G., Q. J. Nucl. Med. Mol. Imaging, 2012, vol. 56, no. 2, pp. 112–137.Google Scholar
  28. 28.
    Di Costanzo, A., Trojsi, F., Giannatempo, G.M., Vuolo, L., Popolizio, T., Catapano, D., Bonavita, S., d’Angelo, V.A., Tedeschi, G., and Scarabino, T., J. Exp. Clin. Cancer Res., 2006, vol. 25, no. 3, pp. 383–390.PubMedGoogle Scholar
  29. 29.
    Wu, C.T., Chen, L.C., Kuo, C.P., Ju, D.T., Borel, C.O., Cherng, C.H., and Wong, C.S., Anesth. Analg., 2010, vol. 110, no. 3, pp. 903–907.CrossRefPubMedGoogle Scholar
  30. 30.
    Quentin, C., Charbonneau, S., Moumdjian, R., Lallo, A., Bouthilier, A., Fournier-Gosselin, M.P., Bojanowski, M., Ruel, M., Sylvestre, M.P., and Girard, F., Anesth. Analg., 2013, vol. 116, no. 4, pp. 862–868.CrossRefPubMedGoogle Scholar
  31. 31.
    Rasmussen, M., Bundgaard, H., and Cold, G.E., J. Neurosurg., 2004, vol. 101, no. 4, pp. 621–626.CrossRefPubMedGoogle Scholar
  32. 32.
    Yachnis, A.T. and Rivera-Zengotita, M.L., Cerebral Edema, Neuropathology, Philadelphia: Saunders/Elsevier, 2014, pp. 2–3.Google Scholar
  33. 33.
    Sandercock, P.A. and Soane, T., Cochrane Database Syst. Rev., 2011, vol. 9, p. CD000064.Google Scholar
  34. 34.
    Bebawy, J.F., J. Neurosurg. Anesthesiol., 2012, vol. 24, no. 3, pp. 173–177.CrossRefPubMedGoogle Scholar
  35. 35.
    Grände, P-O. and Romner, B., J. Neurosurg. Anesthesiol., 2012, vol. 24, no. 4, pp. 407–412.CrossRefPubMedGoogle Scholar
  36. 36.
    Mendelow, A.D., Teasdale, G.M., Russell, T., Flood, J., Patterson, J., and Murray, G.D., J. Neurosurg., 1985, vol. 63, no. 1, pp. 43–48.CrossRefPubMedGoogle Scholar
  37. 37.
    Bratton, S.L., Chestnut, R.M., Ghajar, J., McConnell Hammond, F.F., Harris, O.A., Hartl, R., Manley, G.T., Nemecek, A., Newell, D.W., Rosenthal, G., Schouten, J., Shutter, L., Timmons, S.D., Ullman, J.S., Videtta, W., Wilberger, J.E., and Wright, D.W., Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons, Joint Section on Neurotrauma and Critical Care, AANS/CNS, J. Neurotrauma, 2007, Suppl. 1, pp. S14–S20.Google Scholar
  38. 38.
    McManus, M.L. and Soriano, S.G., Anesthesiology, 1998, vol. 88, no. 6, pp. 1586–1591.CrossRefPubMedGoogle Scholar
  39. 39.
    Fink, M.E., Continuum (Minneap. Minn.), 2012, vol. 18, no. 3, pp. 640–654.Google Scholar
  40. 40.
    Froelich, M., Ni, Q., Wess, C., Ougorets, I., and Härtl, R., Crit. Care Med., 2009, vol. 37, no. 4, pp. 1433–1441.CrossRefPubMedGoogle Scholar
  41. 41.
    Prabhakar, H., Singh, G.P., Anand, V., and Kalaivani, M., Cochrane Database Syst. Rev., 2014, vol. 7, p. CD010026.Google Scholar
  42. 42.
    Hauger, R.L., Risbrough, V., Brauns, O., and Dautzenberg, F.M., CNS Neurol. Disord. Drug Targets, 2006, vol. 5, no. 4, pp. 453–479.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Rothstein, J.D., Patel, S., Regan, M.R., Haenggeli, C., Huang, Y.H., Bergles, D.E., Jin, L., Dykes Hoberg, M., Vidensky, S., Chung, D.S., Toan, S.V., Bruijn, L.I., Su, Z.Z., Gupta, P., and Fisher, P.B., Nature, 2005, vol. 433, no. 7021, pp. 73–77.CrossRefPubMedGoogle Scholar
  44. 44.
    Becker, D.E. and Reed, K.L., Anesth. Prog., 2012, vol. 59, no. 2, pp. 90–103.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Farag, E., Ghobrial, M., Sessler, D.I., Dalton, J.E., Liu, J., Lee, J.H., Zaky, S., Benzel, E., Bingaman, W., and Kurz, A., Anesthesiology, 2013, vol. 119, no. 4, pp. 932–940.CrossRefPubMedGoogle Scholar
  46. 46.
    Hollmann, M.W. and Durieux, M.E., Anesthesiology, 2000, vol. 93, no. 3, pp. 858–875.CrossRefPubMedGoogle Scholar
  47. 47.
    Liu, K., Adachi, N., Yanase, H., Kataoka, K., and Arai, T., Anesthesiology, 1997, vol. 87, no. 6, pp. 1470–1478.CrossRefPubMedGoogle Scholar
  48. 48.
    Chen, J., Adachi, N., Liu, K., Nagaro, T., and Arai, T., Brain Res., 1998, vol. 792, no. 1, pp. 16–23.CrossRefPubMedGoogle Scholar
  49. 49.
    Schurr, A., Spears, B., Reid, K.H., West, C.A., Edmonds, H.L., and Rigor, B.M., Anesthesiology, 1986, vol. 64, no. 4, pp. 501–503.CrossRefPubMedGoogle Scholar
  50. 50.
    Fujitani, T., Adachi, N., Miyazaki, H., Liu, K., Nakamura, Y., Kataoka, K., and Arai, T., Neurosci. Lett., 1994, vol. 179, nos. 1–2, pp. 91–94.CrossRefPubMedGoogle Scholar
  51. 51.
    Das, K.C. and Misra, H.P., Mol. Cell. Biochem., 1992, vol. 115, no. 2, pp. 179–185.CrossRefPubMedGoogle Scholar
  52. 52.
    Astrup, J., Sørensen, P.M., and Sørensen, H.R., Anesthesiology, 1981, vol. 55, no. 3, pp. 263–268.CrossRefPubMedGoogle Scholar
  53. 53.
    Lei, B., Popp, S., Capuano-Waters, C., Cottrell, J.E., and Kass, I.S., Neuroscience, 2004, vol. 125, no. 3, pp. 691–701.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Luisa Piedad Manrique-Carmona
    • 1
  • Iván Pérez-Neri
    • 2
    • 3
  1. 1.Department of NeuroanesthesiologyNational Institute of Neurology and NeurosurgeryMexico CityMexico
  2. 2.Department of NeurochemistryNational Institute of Neurology and NeurosurgeryMexico CityMexico
  3. 3.Department of NeurochemistryNational Institute of Neurology and NeurosurgeryLa Fama, Tlalpan, Mexico CityMexico

Personalised recommendations