Neurochemical Journal

, Volume 10, Issue 2, pp 137–143 | Cite as

The dynamics of monoamine metabolism in rat brain structures in the late period after exposure to accelerated carbon ions

  • K. V. Belokopytova
  • O. V. Belov
  • V. S. Kudrin
  • V. B. Narkevich
  • E. A. Krasavin
  • G. N. Timoshenko
  • A. S. Bazyan
Experimental Articles


We studied the effect of carbon ions (12C) with an energy of 500 MeV/nucleon at a dose of 1 Gy on monoamine metabolism in the brains of rats of different ages. Neurochemical parameters that characterize the distribution of noradrenaline (NA), dopamine (DA), serotonin (5-HT), and its metabolites were evaluated during 2 months on days 30 and 90 after the exposure to radiation. We studied the prefrontal cortex, hypothalamus, hippocampus, and striatum. The results showed changes in the activities of the NA, DA, and 5-HT systems in rats of different age groups after exposure to radiation. The most prominent differences in the exposed and control animals were observed in the prefrontal cortex and hypothalamus, which indicates the important role of these brain regions in long-term effects of exposure to radiation on the central nervous system. A comparison of animals from different age groups showed a decrease in the intensity of the temporal changes in all analyzed structures except the striatum in the exposed rats. Based on these findings, we assumed that the activation of compensatory and repairing mechanisms occurs in the late post-radiation period. At relatively low linear energy transfer of particles (10.6 keV/µm), it may lead to the partial recovery of brain functions that were impaired by radiation. At higher values of the linear energy transfer, the compensatory and recovery processes are activated to a lesser degree and functional impairment increases with time.


late effects monoamines metabolites heavy ions the central nervous system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Parihar, V.K., Allen, B., Tran, K.K., Macaraeg, T.G., Chu, E.M., Kwok, S.F., Chmielewski, N.N., Craver, B.M., Baulch, J.E., Acharya, M.M., Cucinotta, F.A., and Limoli, C.L., Sci. Adv., 2015, vol. 1, no. 4, pp. 1–6.CrossRefGoogle Scholar
  2. 2.
    Grigor’ev, A.I., Krasavin, E.A., and Ostrovskii, M.A., Ros. Fiziol. Zhurn. im. I.M. Sechenova, 2013, vol. 99, no. 3, pp. 273–280.Google Scholar
  3. 3.
    Cucinotta, F.A., Alp, M., Sulzman, F.M., and Wang, M., Life Sci. Space Res., 2014, vol. 2, pp. 54–69.CrossRefGoogle Scholar
  4. 4.
    Kalmykov, N.I., Kulikov, G.V., and Roganova, T.M., Model’ kosmosa. T. 1. Fizicheskie usloviya v kosmicheskom prostranstve, (Model of the Space, vol. 1. Physical Conditions in the Space), Panasyuk, M.I., Ed., Moscow: KDU, 2007, pp. 62–96.Google Scholar
  5. 5.
    Dorman, L.M., Eksperimental’nye i teoreticheskie osnovy astrofiziki kosmicheskikh luchei (Experimental and Theoretical Basics of Astrophysics of the Cosmic Rays), Moscow: Nauka, 1975.Google Scholar
  6. 6.
    Matveeva, M.I., Shtemberg, A.S., Timoshenko, G.N., Krasavin, E.A., Narkevich, V.B., Klodt, P.M., Kudrin, V.S., and Bazyan, A.S., Neurochem. J., 2013, vol. 7, no. 4, pp. 303–307.CrossRefGoogle Scholar
  7. 7.
    Shtemberg, A.S., Kokhan, V.S., Kudrin, V.S., Matveeva, M.I., Lebedeva-Georgievskaya, K.D., Timoshenko, G.N., Molokanov, A.G., Krasavin, E.A., Narkevich, V.B., Klodt, P.M., and Bazyan, A.S., Neirokhimiya, 2015, vol. 9, no. 1, pp. 66–72.Google Scholar
  8. 8.
    Bazyan, A.S., Grigor’yan, G.A., and Ioffe, M.E., Usp. Fiziol. Nauk, 2011, vol. 42, no. 3, pp. 65–80.Google Scholar
  9. 9.
    Bazyan, A.S., Usp. Fiziol. Nauk, 2013, vol. 44, no. 4, pp. 3–23.Google Scholar
  10. 10.
    Bazyan, A.S. and Rogal’, A.V., Usp. Fiziol. Nauk, 2015, vol. 46, no. 1, pp. 3–21.PubMedGoogle Scholar
  11. 11.
    Belokopytova, K.V., Belov, O.V., Kudrin, V.S., Narkevich, V.B., Klodt, P.M., Bazyan, A.S., Krasavin, E.A., and Timoshenko, G.N., Neirochem. J., 2015, vol. 9, no. 3, pp. 214–220.CrossRefGoogle Scholar
  12. 12.
    Segovia, G., Porras, A., Del Arco, A., and Mora, F., Mech. Ageing Dev., 2001, vol. 122, pp. 1–29.CrossRefPubMedGoogle Scholar
  13. 13.
    Koprowska, M., Krotewicz, M., Romaniuk, A., and Strzelczuk, M., Acta Neurobiol. Exp. (Wars.), 2004, vol. 64, pp. 131–142.Google Scholar
  14. 14.
    Morgan, D.G. and May, P.C., Handbook of the Biology of Aging, Schneider, E.L. and Rowe, J.W.N.Y, Eds., New-York: Acad. Press, 1990.Google Scholar
  15. 15.
    McEntee, W.J. and Crook, T.H., Psychopharmacol., 1991, vol. 103, pp. 143–149.CrossRefGoogle Scholar
  16. 16.
    Fisher, W., Chen, K.S., Gage, F.H., and Bjorklund, A., Neurobiol. Aging, 1992, vol. 13, pp. 9–23.CrossRefGoogle Scholar
  17. 17.
    Finch, C.E. and Roth, G.S., in Basic Neurochemistry, Molecular, Cellular and Medical Aspects, Siegel, G.J., Agranoff, B.W., Albers, R.W., Fisher, S.K., and Uhler, M.D., Eds., Philadelphia: Lippincott-Raven Publishers, 1999, pp. 613–633.Google Scholar
  18. 18.
    Demarest, K.T., Riegle, G.D., and Moore, K.E., Neuroendocrin., 1980, vol. 31, pp. 222–227.CrossRefGoogle Scholar
  19. 19.
    Carfagna, N., Trunzo, F., and Moretti, A., Exp. Gerontol., 1985, vol. 20, pp. 265–269.CrossRefPubMedGoogle Scholar
  20. 20.
    Moretti, A., Carfagna, N., and Trunzo, F., Neurochem. Res., 1987, vol. 12, pp. 1035–1039.CrossRefPubMedGoogle Scholar
  21. 21.
    Venero, J.L., Machado, A., and Cano, J., J. Neurochem., 1991, vol. 56, pp. 1940–1948.CrossRefPubMedGoogle Scholar
  22. 22.
    Finch, C.E., Brain. Res., 1976, vol. 52, pp. 261–276.CrossRefGoogle Scholar
  23. 23.
    Ponzio, F., Brunello, N., and Algeri, S., J. Neurochem., 1978, vol. 30, pp. 1617–1620.CrossRefPubMedGoogle Scholar
  24. 24.
    Brizee, K.R., Samorajski, T., Smith, R.C., and Brizee, D.L., Brain Neurotransmitters and Receptors in Aging and Age-related Disorders (Aging. vol. 17), Enna, S.J., Samorajski, T., and Beer, B., Eds., New York: Raven Press, 1998, pp. 59–80.Google Scholar
  25. 25.
    Gerhardt, G.A., Cass, W.A., Yi, A., Zhang, Z., and Gash, D.M., J. Neurochem., 2002, vol. 80, pp. 168–177.CrossRefPubMedGoogle Scholar
  26. 26.
    Siddigi, Z., Kemper, T.I., and Kiliany, R., J. Neuropathol. Exp. Neurol., 1999, vol. 58, pp. 959–971.CrossRefGoogle Scholar
  27. 27.
    Estes, K.S. and Simpkins, J.W., Brain. Res., 1980, vol. 194, pp. 556–560.CrossRefPubMedGoogle Scholar
  28. 28.
    Algeri, S., Calderini, G., Tofano, G., and Ponzio, F., Aging of the Brain (Aging. vol. 22), Samuel, D., Algeri, S., Gershon, S., Grimm, V.E., and Toffano, G., Eds., New York: Raven Press, 1983, pp. 227–243.Google Scholar
  29. 29.
    Santiago, M., Machado, A., Reinoso-Suárez, F., and Cano, J., Life Sci., 1988, vol. 42, pp. 2503–2508.CrossRefPubMedGoogle Scholar
  30. 30.
    David, J.C., Coulon, J.F., Cavoy, A., and Delacour, J., J. Neurochem., 1989, vol. 53, pp. 149–154.CrossRefPubMedGoogle Scholar
  31. 31.
    Venero, J.L., De la Roza, C., Machado, A., and Cano, J., Brain Res., 1993, vol. 631, pp. 89–96.CrossRefPubMedGoogle Scholar
  32. 32.
    Ponzio, F., Calderini, G., Lomuscio, G., Vantini, G., Toffano, G., and Algeri, S., Neurobiol. Aging, 1982, vol. 3, pp. 23–29.CrossRefPubMedGoogle Scholar
  33. 33.
    Harik, S.I. and McCracken, K.A., Brain Res., 1986, vol. 381, pp. 125–130.CrossRefPubMedGoogle Scholar
  34. 34.
    Machado, A., Cano, J., and Santiago, M., Arch. Gerontol. Geriatr., 1986, vol. 5, pp. 333–342.CrossRefPubMedGoogle Scholar
  35. 35.
    Strong, R., Samorajski, T., and Gottesfeld, Z., J. Neurochem., 1984, vol. 43, pp. 1766–1768.CrossRefPubMedGoogle Scholar
  36. 36.
    Meek, J.L., Bertilsson, L., Cheney, D.L., Zsilla, G., and Costa, E., J. Gerontol., 1977, vol. 32, pp. 129–131.CrossRefGoogle Scholar
  37. 37.
    Roubein, Y.F., Embree, L.J., and Jackson, D.W., Exp. Aging Res., 1986, vol. 12, pp. 193–196.CrossRefPubMedGoogle Scholar
  38. 38.
    Simpkins, J.W., Mueller, G.P., Huang, H.H., and Meites, J., Endocrinol., 1977, vol. 100, pp. 1672–1678.CrossRefGoogle Scholar
  39. 39.
    Brunello, N., Riva, M., Rovescalli, A.C., Galimberti, R., and Racagni, G., Pharmacol. Toxicol., 1988, vol. 63, pp. 150–155.CrossRefPubMedGoogle Scholar
  40. 40.
    Pradhan, S.N., Life Sci., 1980, vol. 26, pp. 1643–1656.CrossRefPubMedGoogle Scholar
  41. 41.
    Allen, S.J., Benton, J.S., Goodhardt, M.J., Haan, E.A., Sims, N.R., Smith, C.C., Spillane, J.A., Bowen, D.M., and Davison, A.N., J. Neurochem., 1983, vol. 41, pp. 256–265.CrossRefPubMedGoogle Scholar
  42. 42.
    Grachev, I.D. and Apkarian, A.V., Cogn. Brain Res., 2001, vol. 11, pp. 185–197.CrossRefGoogle Scholar
  43. 43.
    Hare, T.A., Wood, J.H., Manyam, B.V., Gerner, R.H., Ballenger, J.C., and Post, R.M., Arch. Neurol., 1982, vol. 39, pp. 247–249.CrossRefPubMedGoogle Scholar
  44. 44.
    Bazyan, A.S., Neirokhimiya, 1999, vol. 16, no. 2, pp. 88–103.Google Scholar
  45. 45.
    Bazyan, A.S., Usp. Fiziol. Nauk, 2001, vol. 32, no. 3, pp. 3–22.Google Scholar
  46. 46.
    Bazyan, A.S. and Segal, O.L., Neurochem. J., 2009, vol. 3, no. 2, pp. 77–86.CrossRefGoogle Scholar
  47. 47.
    Bazyan, A.S., Orlova, N.V., and Getsova, V.M., Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2000, vol. 50, no. 3, pp. 500–508.Google Scholar
  48. 48.
    Bazyan, A.S. and Grigor’yan, G.A., Usp. Fiziol. Nauk, 2006, vol. 37, no. 1, pp. 68–83.Google Scholar
  49. 49.
    Migues, J.M., Aldegunde, M., Paz-Valinas, L., Recio, J., and Sanchez-Barcelo, E., J. Neural Transm., 1999, vol. 106, pp. 1089–1098.CrossRefGoogle Scholar
  50. 50.
    Galva, M.D., Bondiolotti, G.P., Olasmaa, M., and Picotti, G.B., J. Neural Transm. [Gen. Sect.], 1995, vol. 101, pp. 83–94.CrossRefGoogle Scholar
  51. 51.
    Darbin, O., Risso, J.-J., and Rostain, J.-C., Neurosci. Let., 1997, vol. 238, pp. 69–72.CrossRefGoogle Scholar
  52. 52.
    Britten, R.A., Davis, L.K., Johnson, A.M., Keeney, S., Siegel, A., Sanford, L.D., Singletary, S.J., and Lonart, G., Radiat. Res., 2012, vol. 177, pp. 146–151.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • K. V. Belokopytova
    • 1
    • 2
  • O. V. Belov
    • 1
  • V. S. Kudrin
    • 3
  • V. B. Narkevich
    • 3
  • E. A. Krasavin
    • 1
  • G. N. Timoshenko
    • 1
  • A. S. Bazyan
    • 4
  1. 1.Joint Institute of Nuclear ResearchDubnaRussia
  2. 2.Institute of Genetics and PhysiologyAcademy of Sciences of MoldovaChisinauMoldova
  3. 3.Zakusov Research Institute of PharmacologyMoscowRussia
  4. 4.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations