Neurochemical Journal

, Volume 9, Issue 1, pp 29–38 | Cite as

The functional activity of the adenylate cyclase system in the brains of rats with metabolic syndrome induced by immunization with peptide 11–25 of the type 4 melanocortin receptor

  • A. O. Shpakov
  • K. V. Derkach
  • O. A. Zharova
  • E. A. Shpakova
Experimental Articles


The melanocortin system of the brain, which includes melanocortin receptors of the fourth type (M4R), plays a key role in the regulation of energy homeostasis and controls functions of the nervous system. Inhibition of M4R results in obesity and the metabolic syndrome, which presumably occur due to changes in the neuromediator systems of the brain. To examine this hypothesis, we examined the effect of long-term immunization of rats with the BSA-conjugated K-[TSLHLWNRSSHGLHG11–25]-A peptide (K-[11–25]-A), which corresponds to the extracellular N-terminal domain of M4R, on the activity of the hormone-sensitive adenylate cyclase signaling system (ACSS) of the brain. In rats that were immunized numerous times with the BSA conjugate (the I group), we observed an increase in body weight, impaired glucose tolerance, insulin resistance, and dyslipidemia. At 13 months after the beginning of the experiment, we evaluated the ACSS activity in synaptosomal membranes from the brain. The basal activity of AC and its regulation by GppNHp and forskolin did not differ from the control. In the I group both the AC-stimulating effects of the α-melanocyte-stimulating hormone (α-MSH), M4R-agonist THIQ, dopamine, and pituitary AC-activating polypeptide and the AC-inhibiting effects of serotonin and 5-nonyloxytryptamine, an agonist of 5-hydroxytryptamine receptor (5-HTR) of the 1B/1D-subtype, decreased. The affinity of M4R to agonists did not change. The AC-stimulating effect of the M3R agonist γ-MSH was enhanced, which is a compensation for the weakening of M4R functions. The AC-stimulating effects of serotonin, EMD-386088, an agonist of 6 type 5-HTR relaxin, and noradrenaline, as well as the inhibitory effects of noradrenaline, the D2-agonist bromocriptine, and somatostatin in the I group did not change. Thus, inhibition of M4R as a result of immunization with the BSA conjugate of the K-[11–25]-A peptide alters the sensitivity of the ACSS of the rat brain to peptides of melanocortin family and other neurohormones. These alterations are characterized by hormonal and receptor specificity and may be one of the causes of insulin resistance, metabolic syndrome, and functional disturbances in the CNS and at the periphery under conditions of M4R deficit.


adenylate cyclase adenylate cyclase signaling system pituitary adenylate cyclase-activating polypep-tide dopamine brain melanocortin receptor melanocyte-stimulating hormone metabolic syndrome immunization peptide serotonin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Israel, D.D., Sheffer-Babila, S., de Luca, C., Jo, Y.H., Liu, S.M., Xia, Q., Spergel, D.J., Dun, S.L., Dun, N.J., and Chua, S.C., Endocrinology, 2012, vol. 153, pp. 2408–2419.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    do Carmo, J.M., da Silva, A.A., Dubinion, J., Sessums, P.O., Ebaady, S.H., Wang, Z., and Hall, J.E., IUBMB Life, 2013, vol. 65, pp. 692–698.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Shpakov, A.O. and Derkach, K.V., Tsitologiya, 2012, vol. 54, no. 10, pp. 733–741.Google Scholar
  4. 4.
    Girardet, C. and Butler, A.A., Biochim. Biophys. Acta, 2014, vol. 1842, pp. 482–494.CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Caruso, V., Lagerström, M.C., Olszewski, P.K., Fredriksson, R., and Schiöth, H.B., Nat. Rev. Neurosci., 2014, vol. 15, pp. 98–110.CrossRefPubMedGoogle Scholar
  6. 6.
    Xiang, Z., Proneth, B., Dirain, M.L., Litherland, S.A., and Haskell-Luevano, C., Biochemistry, 2010, vol. 49, pp. 4583–4600.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Hinney, A., Volckmar, A.L., and Knoll, N., Prog. Mol. Biol. Transl. Sci., 2013, vol. 114, pp. 147–191.CrossRefPubMedGoogle Scholar
  8. 8.
    Nijenhuis, W.A., Oosterom, J., and Adan, R.A., Mol. Endocrinol., 2001, vol. 15, pp. 164–171.PubMedGoogle Scholar
  9. 9.
    Tao, Y.X., Huang, H., Wang, Z.Q., Yang, F., Williams, J.N., and Nikiforovich, G.V., Methods Enzymol., 2010, vol. 484, pp. 267–279.CrossRefPubMedGoogle Scholar
  10. 10.
    Sinno, M.H., Do Rego, J.C., Coëffier, M., Bole-Feysot, C., Ducrotté, P., Gilbert, D., Tron, F., Costentin, J., Hökfelt, T., Déchelotte, P., and Fetissov, S.O., Psychoneuroendocrinology, 2009, vol. 34, pp. 140–149.CrossRefPubMedGoogle Scholar
  11. 11.
    Lucas, N., Legrand, R., Ouelaa, W., Breton, J., Tennoune, N., Bole-Feysot, C., Déchelotte, P., and Fetissov, S.O., Neuropeptides, 2014, vol. 48, pp. 21–27.CrossRefPubMedGoogle Scholar
  12. 12.
    Hofbauer, K.G., Lecourt, A.C., and Peter, J.C., Nutrition, 2008, vol. 24, pp. 791–797.CrossRefPubMedGoogle Scholar
  13. 13.
    Peter, J.C., Lecourt, A.C., Weckering, M., Zipfel, G., Niehoff, M.L., Banks, W.A., and Hofbauer, K.G., J. Pharmacol. Exp. Ther., 2010, vol. 333, pp. 478–490.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Shpakova, E.A., Derkach, K.V., and Shpakov, A.O., Byul. Eksper. Biol. Med., 2013, vol. 156, no. 11, pp. 603–607.Google Scholar
  15. 15.
    Shpakov, A.O., Shpakova, E.A., Tarasenko, I.I., Derkach, K.V., and Vlasov, G.P., Int. J. Pept. Res. Ther., 2010, vol. 16, pp. 95–105.CrossRefGoogle Scholar
  16. 16.
    Shpakov, A.O., Chistyakova, O.V., Derkach, K.V., Moiseyuk, I.V., and Bondareva, V.M., Central Eur. J. Biol., 2012, vol. 7, pp. 33–47.CrossRefGoogle Scholar
  17. 17.
    Matthews, D.R., Hosker, J.P., Rudenski, A.S., Naylor, B.A., Treacher, D.F., and Turner, R.C., Diabetologia, 1985, vol. 28, pp. 412–419.CrossRefPubMedGoogle Scholar
  18. 18.
    Fan, W., Dinulescu, D.M., Butler, A.A., Zhou, J., Marks, D.L., and Cone, R.D., Endocrinology, 2000, vol. 141, pp. 3072–3079.PubMedGoogle Scholar
  19. 19.
    Obici, S., Feng, Z., Tan, J., Liu, L., Karkanias, G., and Rossetti, L., J. Clin. Invest., 2001, vol. 108, pp. 1079–1085.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Nogueiras, R., Wiedmer, P., Perez-Tilve, D., Veyrat-Durebex, C., Keogh, J.M., Sutton, G.M., Pfluger, P.T., Castanada, T.R., Neschen, S., and Hofmann, S.M., J. Clin. Invest., 2007, vol. 117, pp. 3475–3488.CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Shpakov, A., Chistyakova, O., Derkach, K., and Bondareva, V., in Neurodegenerative Diseases—Processes, Prevention, Protection and Monitoring, Chang, R.C.-C., Ed., Rijeka: Intech Open Access Publisher, 2011, pp. 349–386.Google Scholar
  22. 22.
    Haskell-Luevano, C., Schaub, J.W., Andreasen, A., Haskell, K.R., Moore, M.C., Koerper, L.M., Rouzaud, F., Baker, H.V., Millard, W.J., Walter, G., et al., FASEB J., 2009, vol. 23, pp. 642–655.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Balthasar, N., Dalgaard, L.T., Lee, C.E., Yu, J., Funahashi, H., Williams, T., Ferreira, M., Tang, V., McGovern, R.A., Kenny, C.D., et al., Cell, 2005, vol. 123, pp. 493–505.CrossRefPubMedGoogle Scholar
  24. 24.
    Farooqi, I.S., Keogh, J.M., Yeo, G.S., Lank, E.J., Cheetham, T., and O’Rahilly, S., N. Engl. J. Med., 2003, vol. 348, pp. 1085–1095.CrossRefPubMedGoogle Scholar
  25. 25.
    Renquist, B.J., Lippert, R.N., Sebag, J.A., Ellacott, K.L., and Cone, R.D., Eur. J. Pharmacol., 2011, vol. 660, pp. 13–20.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Zhou, L., Sutton, G.M., Rochford, J.J., Semple, R.K., Lam, D.D., Oksanen, L.J., Thornton-Jones, Z.D., Clifton, P.G., Yueh, C.Y., Evans, M.L., McCrimmon, R.J., Elmquist, J.K., Butler, A.A., and Heisler, L.K., Cell Metab., 2007, vol. 6, pp. 398–405.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Mounien, L., Bizet, P., Boutelet, I., Gourcerol, G., Fournier, A., Vaudry, H., and Jegou, S., Neuroscience, 2006, vol. 143, pp. 155–163.CrossRefPubMedGoogle Scholar
  28. 28.
    Cui, H., Mason, B.L., Lee, C., Nishi, A., Elmquist, J.K., and Lutter, M., Physiol. Behav., 2012, vol. 106, pp. 201–210.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Oude Ophuis, R.J., Boender, A.J., van Rozen, A.J., and Adan, R.A., Front. Neuroanat., 2014, vol. 8, p. 14.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Hsu, R., Taylor, J.R., Newton, S.S., Alvaro, J.D., Haile, C., Han, G., et al., Eur. J. Neurosci., 2005, vol. 21, pp. 2233–2242.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Cui, H. and Lutter, M., Genes Brain Behav., 2013, vol. 12, pp. 658–665.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Lim, B.K., Huang, K.W., Grueter, B.A., Rothwell, P.E., and Malenka, R.C., Nature, 2012, vol. 487, pp. 183–189.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Zhou, L., Williams, T., Lachey, J.L., Kishi, T., Cowley, M.A., and Heisler, L.K., Peptides, 2005, vol. 26, pp. 1728–1732.CrossRefPubMedGoogle Scholar
  34. 34.
    Berglund, E.D., Liu, C., Sohn, J.W., Liu, T., Kim, M.H., Lee, C.E., Vianna, C.R., Williams, K.W., Xu, Y., and Elmquist, J.K., J. Clin. Invest., 2013, vol. 123, pp. 5061–5070.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Kawashima, N., Chaki, S., and Okuyama, S., Neurosci. Lett., 2003, vol. 353, pp. 119–122.CrossRefPubMedGoogle Scholar
  36. 36.
    Hashimoto, H., Shintani, N., and Baba, A., Ann. New York Acad. Sci., 2006, vol. 1070, pp. 75–89.CrossRefGoogle Scholar
  37. 37.
    Ago, Y., Yoneyama, M., Ishihama, T., Kataoka, S., Kawada, K., Tanaka, T., Ogita, K., Shintani, N., Hashimoto, H., Baba, A., Takuma, K., and Matsuda, T., Neuroscience, 2011, vol. 172, pp. 554–561.CrossRefPubMedGoogle Scholar
  38. 38.
    Mounien, L., Do Rego, J.C., Bizet, P., Boutelet, I., Gourcerol, G., Fournier, A., Brabet, P., Costentin, J., Vaudry, H., and Jegou, S., Neuropsychopharmacology, 2009, vol. 34, pp. 424–435.CrossRefPubMedGoogle Scholar
  39. 39.
    Tanida, M., Shintani, N., and Hashimoto, H., Neurosci. Res., 2011, vol. 70, pp. 55–61.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. O. Shpakov
    • 1
  • K. V. Derkach
    • 1
  • O. A. Zharova
    • 2
  • E. A. Shpakova
    • 3
  1. 1.Sechenov Institute of Evolution Physiology and BiochemistryRussian Academy of ScienceSt. PetersburgRussia
  2. 2.OOO Teva Pharmaceutical CompanyYaroslavl’Russia
  3. 3.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations