Advertisement

Neurochemical Journal

, Volume 8, Issue 4, pp 238–246 | Cite as

Mechanisms of facilitation and depression in CNS synapses: Presynaptic and postsynaptic components

  • A. P. Bolshakov
  • A. V. Rozov
Review Articles
  • 98 Downloads

Abstract

Here we review the mechanisms of evoked synchronous, asynchronous, and spontaneous release of mediators. Special attention is paid to the relationship between the presynaptic level of calcium and the release probability of neuromediators as a key link whose modulation results in short-term synaptic alterations that lead to the development of facilitation and depression in different CNS synapses. We also review postsynaptic mechanisms that may be responsible for short-term facilitation or depression in synapses.

Keywords

short-term synaptic plasticity facilitation depression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wu, Y., Wang, W., Diez-Sampedro, A., and Richerson, G.B., Neuron, 2007, vol. 56, no. 5, pp. 851–865.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Allen, N.J., Karadottir, R., and Attwell, D., Pflugers Arch., vol. 449, no. 2, pp. 132–142.Google Scholar
  3. 3.
    Kanner, B.I., J. Membr. Biol., 2006, vol. 213, no. 2, pp. 89–100.PubMedCrossRefGoogle Scholar
  4. 4.
    Torres, G.E., Gainetdinov, R.R., and Caron, M.G., Nat. Rev. Neurosci., 2003, vol. 4, no. 1, pp. 13–25.PubMedCrossRefGoogle Scholar
  5. 5.
    Tzingounis, A.V. and Wadiche, J.I., Nat. Rev. Neurosci., 2007, vol. 8, no. 12, pp. 935–947.PubMedCrossRefGoogle Scholar
  6. 6.
    Robertson, S.D., Matthies, H.J., and Galli, A., Mol. Neurobiol., 2009, vol. 39, no. 2, pp. 73–80.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Jahn, R. and Fasshauer, D., Nature, 2012, vol. 490, no. 7419, pp. 201–207.PubMedCrossRefGoogle Scholar
  8. 8.
    Kaeser, P.S. and Regehr, W.G., Annu. Rev. Physiol., 2014, vol. 76, pp. 333–363.PubMedCrossRefGoogle Scholar
  9. 9.
    Sudhof, T.C., Annu. Rev. Neurosci., 2004, vol. 27, pp. 509–547.PubMedCrossRefGoogle Scholar
  10. 10.
    Sudhof, T.C. and Rizo, J., Cold Spring Harb. Perspect. Biol., 2011, vol. 3, no. 12, p. a005637.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Sudhof, T.C., Cold Spring Harb. Perspect. Biol., 2012, vol. 4, no. 1, p. a011353.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Regehr, W.G., Cold Spring Harb. Perspect. Biol., 2012, vol. 4, no. 7, p. a005702.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Sudhof, T.C., Neuron, 2013, vol. 80, no. 3, pp. 675–690.PubMedCrossRefGoogle Scholar
  14. 14.
    Rozov, A., Burnashev, N., Sakmann, B., and Neher, E., J. Physiol., 2001, vol. 531, pp. 807–826.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Vyleta, N.P. and Smith, S.M., J. Neurosci., 2011, vol. 31, no. 12, pp. 4593–4606.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Smith, S.M., Chen, W., Vyleta, N.P., Williams, C., Lee, C.H., Phillips, C., and Andresen, M.C., Cell Calcium, 2012, vol. 52, nos. 3–4, pp. 226–233.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Hefft, S. and Jonas, P., Nat. Neurosci., 2005, vol. 8, no. 10, pp. 1319–1328.PubMedCrossRefGoogle Scholar
  18. 18.
    Yao, J., Gaffaney, J.D., Kwon, S.E., and Chapman, E.R., Cell, 2011, vol. 147, no. 3, pp. 666–677.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Bacaj, T., Wu, D., Yang, X., Morishita, W., Zhou, P., Xu, W., Malenka, R.C., and Sudhof, T.C., Neuron, 2013, vol. 80, no. 4, pp. 947–959.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Few, A.P., Nanou, E., Watari, H., Sullivan, J.M., Scheuer, T., and Catterall, W.A., Proc. Natl. Acad. Sci. USA, 2012, vol. 109, no. 7, pp. E452–E460.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Freund, T.F. and Katona, I., Neuron, 2007, vol. 56, no. 1, pp. 33–42.PubMedCrossRefGoogle Scholar
  22. 22.
    Katz, B. and Miledi, R., J. Physiol., 1968, vol. 195, no. 2, pp. 481–492.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Schwaller, B., Cold Spring Harb. Perspect. Biol., 2010, vol. 2, no. 11, p. a004051.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Blatow, M., Caputi, A., Burnashev, N., Monyer, H., and Rozov, A., Neuron, 2003, vol. 38, no. 1, pp. 79–88.PubMedCrossRefGoogle Scholar
  25. 25.
    Bornschein, G., Arendt, O., Hallermann, S., Brachtendorf, S., Eilers, J., and Schmidt, H., J. Physiol., 2013, vol. 591,Pt. 13, pp. 3355–3370.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Barinka, F. and Druga, R., Physiol. Res., 2010, vol. 59, no. 5, pp. 665–677.PubMedGoogle Scholar
  27. 27.
    Christel, C.J., Schaer, R., Wang, S., Henzi, T., Kreiner, L., Grabs, D., Schwaller, B., and Lee, A., J. Biol. Chem., 2012, vol. 287, no. 47, pp. 39766–39775.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Vreugdenhil, M., Jefferys, J.G., Celio, M.R., and Schwaller, B., J. Neurophysiol., 2003, vol. 89, no. 3, pp. 1414–1422.PubMedCrossRefGoogle Scholar
  29. 29.
    Brody, D.L. and Yue, D.T., J. Neurosci., 2000, vol. 20, no. 3, pp. 889–898.PubMedGoogle Scholar
  30. 30.
    Geiger, J.R. and Jonas, P., Neuron, 2000, vol. 28, no. 3, pp. 927–939.PubMedCrossRefGoogle Scholar
  31. 31.
    Hua, Y., Woehler, A., Kahms, M., Haucke, V., Neher, E., and Klingauf, J., Neuron, 2013, vol. 80, no. 2, pp. 343–349.PubMedCrossRefGoogle Scholar
  32. 32.
    Xu, J. and Wu, L.G., Neuron, 2005, vol. 46, no. 4, pp. 633–645.PubMedCrossRefGoogle Scholar
  33. 33.
    Xu-Friedman, M.A. and Regehr, W.G., Physiol. Rev., 2004, vol. 84, no. 1, pp. 69–85.PubMedCrossRefGoogle Scholar
  34. 34.
    Rozov, A. and Burnashev, N., Nature, 1999, vol. 401, no. 6753, pp. 594–598.PubMedCrossRefGoogle Scholar
  35. 35.
    Traynelis, S.F., Wollmuth, L.P., McBain, C.J., Menniti, F.S., Vance, K.M., Ogden, K.K., Hansen, K.B., Yuan, H., Myers, S.J., and Dingledine, R., Pharmacol. Rev., 2010, vol. 62, no. 3, pp. 405–496.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Rozov, A., Jerecic, J., Sakmann, B., and Burnashev, N., J. Neurosci., 2001, vol. 21, no. 20, pp. 8062–8071.PubMedGoogle Scholar
  37. 37.
    Barberis, A., Mozrzymas, J.W., Ortinski, P.I., and Vicini, S., Eur. J. Neurosci., 2007, vol. 25, no. 9, pp. 2726–2740.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Reyes, A., Lujan, R., Rozov, A., Burnashev, N., Somogyi, P., and Sakmann, B., Nat. Neurosci., 1998, vol. 1, no. 4, pp. 279–285.PubMedCrossRefGoogle Scholar
  39. 39.
    Sylwestrak, E.L. and Ghosh, A., Science, 2012, vol. 338, no. 6106, pp. 536–540.PubMedCrossRefGoogle Scholar
  40. 40.
    Blackman, A.V., Abrahamsson, T., Costa, R.P., Lalanne, T., and Sjostrom, P.J., Front. Synaptic Neurosci., 2013, vol. 5, p. 11.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Laboratory of NeurobiologyKazan Federal UniversityKazanRussia
  3. 3.University of DundeeDundee, ScotlandUK

Personalised recommendations