Skip to main content
Log in

The adaptive role of the CREB and NF-κB neuronal transcription factors in post-stress psychopathology models in rats

  • Experimental Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

We studied the dynamics of the activation of the CREB and NF-κB transcription factors in areas of the rat brain after exposure to pathogenic psycho-emotional stress in the model of endogenous depression and the model of posttraumatic stress disorder (PTSD), as well as after application of hypoxic preconditioning, which prevents the formation of anxiety-depressive pathologies in these models. The development of anxiety-depressive pathology in both models was associated with reduced (10 times lower than the control maximum) or basal levels of the activating transcription factors CREB and NF-κB in the hippocampus and the neocortex. However, in the hypothalamus, NF-κB overactivation (up to an 18-fold increase above the control level) was detected in the model of depression. Therefore the lack of activation of these factors in the extra-hypothalamic areas of the brain may be a common component of the pathogenesis of both depression and PTSD, while NF-κB overactivation in the neurosecretory centers of the hypothalamus is obviously involved in the development of depressive conditions. Antidepressant and anxiolytic actions of hypoxic preconditioning were accompanied by a mild 2- to 6-fold increase in CREB and NF-κB levels in the neurons of the brain in both stress paradigms. Obviously, the maintenance of optimum activity of transcription factors in the neurons of the brain plays an important role in nonspecific compensatory processes that enhance the adaptive potential of the brain under stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walaas, S.I. and Greengard, P., Pharmacol. Rev., 1991, vol. 43, no. 3, pp. 299–349.

    CAS  PubMed  Google Scholar 

  2. Johnson, L.N. and O’Reilly, M., Curr. Opin. Struct. Bio., 1996, vol. 6, pp. 762–769.

    Article  CAS  Google Scholar 

  3. Gonzalez, G.A. and Montminy, M.R., Cell, 1989, vol. 59, pp. 675–680.

    Article  CAS  PubMed  Google Scholar 

  4. Gilmore, T.D., Oncogene, 2006, vol. 25, pp. 6680–6684.

    Article  CAS  PubMed  Google Scholar 

  5. Lonze, B.E. and Ginty, D.D., Neuron, 2002, vol. 35, no. 4, pp. 605–623.

    Article  CAS  PubMed  Google Scholar 

  6. Sakamoto, K., Karelina, K., and Obrietan, K., J. Neurochem., 2011, vol. 116, no. 1, pp. 1–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Chen, L.F. and Greene, W.C., Nat. Rev. Mol. Cell. Biol., 2004, vol. 5, pp. 392–401.

    Article  CAS  PubMed  Google Scholar 

  8. Mattson, M.P., Culmsee, C., Yu, Z., and Camandola, S., J. Neurochem., 2000, vol. 74, no. 2, pp. 443–456.

    Article  CAS  PubMed  Google Scholar 

  9. Rybnikova, E.A., Mironova, V.I., Pivina, S.G., Ordyan, N.E., Tyul’kova, E.I, and Samoilov, M.O., Dokl. Ross. Akad. Nauk, 2006, vol. 411, no. 1, pp. 122–124.

    Google Scholar 

  10. Rybnikova, E.A., Mironova, V.I., Tyul’kova, E.I., and Samoilov, M.O., Zhurn. VND, 2008, vol. 58, no. 4, pp. 475–482.

    Google Scholar 

  11. Seligman, M.E. and Beagley, G., J. Comp. Physiol. Psychol., 1975, vol. 88, pp. 534–541.

    Article  CAS  PubMed  Google Scholar 

  12. Seligman, M.E. and Maier, S.F., J. Exp. Psychol., 1967, vol. 74, pp. 1–9.

    Article  CAS  PubMed  Google Scholar 

  13. Henkel, V., Bussfeld, P., Moller, H.J., and Hegerl, U., Eur. Arch. Psychiatry Clin. Neuroscience, 2002, vol. 252, pp. 240–249.

    Article  CAS  Google Scholar 

  14. Rybnikova, E., Mironova, V., Pivina, S., Tulkova, E., Ordyan, N., Nalivaeva, N., Turner, A.J., and Samoilov, M., Psychoneuroendocrinology, 2007, vol. 32, no. 7, pp. 812–823.

    Article  Google Scholar 

  15. Rybnikova, E., Mironova, V., Pivina, S., Tulkova, E., Ordyan, N., Vataeva, L., Vershinina, E., Abritalin, E., Kolchev, A., Nalivaeva, N., Turner, A.J., and Samoilov, M., Neuroscience Letters, 2007, vol. 417, no. 3, pp. 234–239.

    Article  CAS  PubMed  Google Scholar 

  16. Uys, J.D., Stein, D.J., Daniels, W.M., and Harvey, B.H., Curr. Psychiatry Rep., 2003, vol. 5, no. 4, pp. 274–281.

    Article  PubMed  Google Scholar 

  17. Liberzon, I., Krstov, M., and Young, E.A., Psychoneuroendocrinology, 1997, vol. 22, no. 6, pp. 443–453.

    Article  CAS  PubMed  Google Scholar 

  18. Rybnikova, E.A., Mironova, V.I., and Pivina, S.G., Zhurn. VND, 2010, vol. 60, no. 4, pp. 500–506.

    CAS  Google Scholar 

  19. Samoilov, M.O., Lazarevich, E.V., Semenov, D.G., Mokrushin, A.A., Tyul’kova, E.I., Romanovskii, D.Yu., Milyakova, E.A., and Dudkin, K.N., Ros. Fiziol. Zhurn. im. Sechenova, 2001, vol. 87, no. 6, pp. 714–729.

    CAS  Google Scholar 

  20. Kaskow, J.W., Baker, D., and Geracioti, T.D., Peptides, 2001, vol. 22, pp. 845–851.

    Article  Google Scholar 

  21. Mironova, V.I. and Rybnikova, E.A., Byull. Eksp. Biol. Med., 2008, vol. 145, no. 10, pp. 371–376.

    Google Scholar 

  22. Mironova, V.I. and Rybnikova, E.A., Ros. Fiziol. Zhurn. im. Sechenova, 2008, vol. 94, no. 11, pp. 1277–1284.

    CAS  Google Scholar 

  23. Nagakura, A., Takagi, N., and Takeo, S., Neuroscience, 2002, vol. 113, pp. 519–528.

    Article  CAS  PubMed  Google Scholar 

  24. Churilova, A.V., Rybnikova, E.A., Glushchenko, T.S., Tyul’kova, E.I., and Samoilov, M.O., Morfologiya, 2009, vol. 136, no. 6, pp. 38–42.

    CAS  Google Scholar 

  25. Botchkina, G.I., Geimonen, E., Bilof, M.L., Villarreal, O., and Tracey, K.J., Mol. Med., 1999, vol. 5, pp. 372–381.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Schneider, A., Martin-Villalba, A., Weih, F., Vogel, J., Wirth, T., and Schwaninger, M., Nat. Med., 1999, vol. 5, no. 5, pp. 554–559.

    Article  CAS  PubMed  Google Scholar 

  27. Samoilov, M.O. and Rybnikova, E.A., Ros. Fiziol. Zhurn. im. Sechenova, 2012, vol. 98, no. 1, pp. 108–126.

    CAS  Google Scholar 

  28. Lee, H.T., Chang, Y.C., Wang, L.Y., Wang, S.T., Huang, C.C., and Ho, C.J., Ann. Neurol., 2004, vol. 56, no. 5, pp. 611–623.

    Article  CAS  PubMed  Google Scholar 

  29. Blondeau, N., Widmann, C., Lazdunski, M., and Heurteaux, C., J. Neurosci., 2001, vol. 21, no. 13, pp. 4668–4677.

    CAS  PubMed  Google Scholar 

  30. Kato, N., Kawata, M., and Pitman, R.K., (eds.), PTSD: Brain Mechanisms and Clinical Implications. XI. Springer, 2006, p. 304.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Baranova.

Additional information

Original Russian Text © K.A. Baranova, E.A. Rybnikova, A.V. Churilova, O.V. Vetrovoy, M.O. Samoilov, 2014, published in Neirokhimiya, 2014, Vol. 31, No. 1, pp. 23–30.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baranova, K.A., Rybnikova, E.A., Churilova, A.V. et al. The adaptive role of the CREB and NF-κB neuronal transcription factors in post-stress psychopathology models in rats. Neurochem. J. 8, 17–23 (2014). https://doi.org/10.1134/S1819712414010048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712414010048

Keywords

Navigation