Skip to main content
Log in

Signaling molecules as regulators of neurogenesis in the adult brain

  • Review Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

Studies in the second half of the 20th century accumulated evidence that refuted the dogma that “nervous cells are not restored.” During the entire life of the body, neural stem cells or progenitors are continuously transformed and new structures, such as neurons, astrocytes, and oligodendrocytes, are integrated. Regulation of this process is complex and invariably interrelated with the adaptive capacities of the healthy, aging, and disabled brain. In this review, on the basis of a large body of data, we postulate the hypothesis of the adaptive mission of neurogenesis in the adult brain. We present the data of experimental and clinical studies as a scheme of phase transformation of brain stem cells and their role in adaptive processes. We summarize the data on the role of newborn neurons in the pathology of the ischemic, neurodegenerative, and aging processes. An important role is performed by signaling molecules, which are important integrators of brain adaptive functions. The scheme of the mechanisms of neurogenesis becomes clearer when one takes the large number of various signaling molecules involved in this regulation into account. Several levels of signaling may be noted, such as (a) neurotrophins and growth factors; (b) molecules of the transduction cascade; (c) molecules of transcription of a signal to the replication apparatus of the cell; and (d) epigenetic factors, which govern signaling polyphony. The new and practically important concept that is elaborated here is the thesis that these molecules may be used as “targets” for directed pharmacological therapeutic influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones, E.G. and Mendell, L.M., Science, 1999, vol. 284, no. 5415, p. 739.

    Article  PubMed  CAS  Google Scholar 

  2. Decimo, I., Bifari, F., Krampera, M., and Fumagalli, G., Curr. Pharm. Des., 2012, vol. 18, no. 13, pp. 1755–1783.

    Article  PubMed  CAS  Google Scholar 

  3. Kempermann, G., Adult Neurogenesis. 2. Stem Cells and Neuronal Development in the Adult Brain, Oxford: Oxford University Press, 2011.

    Google Scholar 

  4. Cameron, H.A. and McKay, R.D., J. Comp. Neurol., 2001.

    Google Scholar 

  5. Gould, E., Beylin, A., Tanapat, P., Reeves, A., and Shors, T.J., Nat. Neurosci., 1999, vol. 2, pp. 260–265.

    Article  PubMed  CAS  Google Scholar 

  6. Shors, T.J., Miesegaes, G., Beylin, A., Zhao, M., Rydel, T., and Gould, E., Nature, 2001, vol. 410, pp. 372–376.

    Article  PubMed  CAS  Google Scholar 

  7. Kuhn, H.G., Biebl, M., Wilhelm, D., Li, M., Friedlander, R.M., and Winkler, J., Eur. J. Neurosci., 2005, vol. 22, no. 8, pp. 1907–1915.

    Article  PubMed  Google Scholar 

  8. Toni, N., Laplagne, D.A., Zhao, C., Lombardi, G., Ribak, C.E., Gage, F.H., and Schinder, A.F., Nat. Neurosci., 2008, vol. 11, pp. 901–907.

    Article  PubMed  CAS  Google Scholar 

  9. Cheyne, J.E., Grant, L., Butler-Munro, C., Foote, J.W., Connor, B., and Montgomery, J.M., Mol. Cell Neurosci., 2011, vol. 47, no. 3, pp. 203–214.

    Article  PubMed  CAS  Google Scholar 

  10. Massa, F., Koehl, M., Wiesner, T., Grosjean, N., Revest, J.M., Piazza, P.V., Abrous, D.N., and Oliet, S.H., Proc. Natl. Acad. Sci. USA, 2011, vol. 108, no. 16, pp. 6644–6649.

    Article  PubMed  CAS  Google Scholar 

  11. Coras, R., Siebzehnrubl, F.A., Pauli, E., Huttner, H.B., Njunting, M., Kobow, K., Villmann, C., Hahnen, E., Neuhuber, W., Weigel, D., Buchfelder, M., Stefan, H., Beck, H., Steindler, D.A., and Blumcke, I., Brain, 2010, vol. 133, no. 11, pp. 3359–3372.

    Article  PubMed  Google Scholar 

  12. Sahay, A. and Hen, R., Novartis Found. Symp., 2008, vol. 289, pp. 152–160.

    PubMed  CAS  Google Scholar 

  13. Deng, W., Aimone, J.B., and Gage F.H., Nat. Rev. Neurosci., 2010, vol. 11, no. 5, pp. 339–350.

    Article  PubMed  CAS  Google Scholar 

  14. Hernández-Rabaza, V., Llorens-Martin, M., Velázquez-Sanchez, C., Hernández-Rabaza, V., Llorens-Martin, M., Velazquez-Sanchez, C., Ferragud, A., Arcusa, A., Gumus, H.G., Gómez-Pinedo, U., Perez-Villalba, A., Rosello, J., Trejo, J.L., Barcia, J.A., and Canales, J.J., Neuroscience, 2009, vol. 159, no. 1, pp. 59–66.

    Article  PubMed  Google Scholar 

  15. Pan, Y.W., Chan, G.C., Kuo, C.T., Storm, D.R., and Xia, Z., J. Neurosci., 2012, vol. 32, no. 19, pp. 6444–6455.

    Article  PubMed  CAS  Google Scholar 

  16. Ge, S., Yang, C.H., Hsu, K.S., Ming, G.L., and Song, H., Neuron, 2007, vol. 54, no. 4, pp. 559–566.

    Article  PubMed  CAS  Google Scholar 

  17. Bruel-Jungerman, E., Davis, S., Rampon, C., and Laroche, S., J. Neurosci., 2006, vol. 26, no. 22, pp. 5888–5893.

    Article  PubMed  CAS  Google Scholar 

  18. Merlo, S., Canonico, P.L., and Sortino, M.A., Neuropharmacology, 2011, vol. 60, no. 6, pp. 892–900.

    Article  PubMed  CAS  Google Scholar 

  19. Banasr, M., Hery, M., Printemps, R., and Daszuta, A., Neuropsychopharmacology, 2004, vol. 29, pp. 450–460.

    Article  PubMed  CAS  Google Scholar 

  20. Giachino, C., De Marchis, S., Giampietro, C., Parlato, R., Perroteau, I., Schutz, G., Fasolo, A., and Peretto, P., J. Neurosci., 2005, vol. 25, pp. 10105–10118.

    Article  PubMed  CAS  Google Scholar 

  21. Fukui, M., Nakamichi, N., Yoneyama, M., Ozawa, S., Fujimori, S., Takahata, Y., Nakamura, N., Taniura, H., and Yoneda, Y., J. Cell Physiol., 2008, vol. 216, no. 2, pp. 507–519.

    Article  PubMed  CAS  Google Scholar 

  22. Yoneyama, M., Fukui, M., Nakamichi, N., Kitayama, T., Taniura, H., and Yoneda, Y., J. Neurochem., 2007, vol. 100, no. 6, pp. 1667–1679.

    PubMed  CAS  Google Scholar 

  23. Brazel, C.Y., Nunez, J.L., Yang, Z., and Levison, S.W., Neuroscience, 2005, vol. 131, pp. 55–65.

    Article  PubMed  CAS  Google Scholar 

  24. Nakamichi, N., Takarada, T., and Yoneda, Y., J. Pharmacol. Sci., 2009, vol. 110, no. 2, pp. 133–149.

    Article  PubMed  CAS  Google Scholar 

  25. Kotani, S., Yamauchi, T., Teramoto, T., and Ogura, H., Chem. Biol. Interact., 2008, vol. 175, nos. 1-3, pp. 227–230.

    Article  PubMed  CAS  Google Scholar 

  26. Shetty, A.K., Hippocampus, 2004, vol. 14, no. 5, pp. 595–614.

    Article  PubMed  Google Scholar 

  27. Gómez-Lira, G., Lamas, M., Romo-Parra, H., and Gutiérrez, R., J. Neurosci., 2005, vol. 25, no. 30, pp. 6939–6946.

    Article  PubMed  Google Scholar 

  28. Arenas, E., Ann. N.Y. Acad. Sci., 2005, vol. 1049, pp. 51–66.

    Article  PubMed  CAS  Google Scholar 

  29. Gomazkov, O.A., Neirotroficheskaya regulyatsiya i stvolovye kletki mozga (Neurotrophic Regulation and Stem Cells of the Brain), Moscow: IKAR, 2006.

    Google Scholar 

  30. Kirschenbaum, B. and Goldman, S.A., Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 210–214.

    Article  PubMed  CAS  Google Scholar 

  31. Zigova, T., Pencea, V., Wiegand, S.J., and Luskin, M.B., Mol. Cell. Neurosci., 1998, vol. 11, pp. 234–245.

    Article  PubMed  CAS  Google Scholar 

  32. Pencea, V., Bingaman, K.D., Wiegand, S.J., and Luskin, M.B., J. Neurosci., 2001, vol. 21, pp. 6706–6717.

    PubMed  CAS  Google Scholar 

  33. Bath, K.G., Mandairon, N., Jing, D., Rajagopal, R., Kapoor, R., Chen, Z.Y., Khan, T., Proenca, C.C., Kraemer, R., Cleland, T.A., Hempstead, B.L., Chao, M.V., and Lee, F.S., J. Neurosci., 2008, vol. 28, pp. 2383–2393.

    Article  PubMed  CAS  Google Scholar 

  34. Bergami, M., Rimondini, R., Santi, S., Blum, R., Gotz, M., and Canossa, M., Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 15570–15575.

    Article  PubMed  CAS  Google Scholar 

  35. Snapyan, M., Lemasson, M., Brill, M.S., Blais, M., Massouh, M., Ninkovic, J., Gravel, C., Berthod, F., Gotz, M., Barker, P.A., Parent, A., and Saghatelyan, A., J. Neurosci., 2009, vol. 29, pp. 4172–4188.

    Article  PubMed  CAS  Google Scholar 

  36. Tropepe, V., Craig, C.G., Morshead, C.M., and van der Kooy, D., J. Neurosci., 1997, vol. 17, pp. 7850–7859.

    PubMed  CAS  Google Scholar 

  37. Zhao, M., Li, D., Shimazu, K., Zhou, Y.X., Lu, B., and Deng, C.X., Biol. Psychiatry, 2007, vol. 62, pp. 381–390.

    Article  PubMed  CAS  Google Scholar 

  38. Wang, Y.Q., Jin, K., Mao, X.O., Xie, L., Banwait, S., Marti, H.H., and Greenberg, D.A., J. Neurosci. Res., 2007, vol. 85, pp. 740–747.

    Article  PubMed  CAS  Google Scholar 

  39. Schabitz, W.R., Steigleder, T., Cooper-Kuhn, C.M., Schwab, S., Sommer, C., Schneider, A., and Kuhn, H.G., Stroke, 2007, vol. 38, pp. 2165–2172.

    Article  PubMed  Google Scholar 

  40. Liao, L., Pilotte, J., Xu, T., Wong, C.C., Edelman, G.M., Vanderklish, P., and Yates, J.R., 3rd, J. Proteome Res., 2007, vol. 6, no. 3, pp. 1059–1071.

    Article  PubMed  CAS  Google Scholar 

  41. Berezovska, O., Xia, M.Q., and Hyman, B.T., J. Neuropathol. Exp. Neurol., 1998, vol. 57, pp. 738–745.

    Article  PubMed  CAS  Google Scholar 

  42. Xiao, M.J., Han, Z., Shao, B., and Jin, K., Int. J. Physiol. Pathophysiol. Pharmacol., 2009, vol. 1, no. 2, p. 192–202.

    PubMed  CAS  Google Scholar 

  43. Hawasli, A.H., Benavides, D.R., Nguyen, C., Kansy, J.W., Hayashi, K., Chambon, P., Greengard, P., Powell, C.M., Cooper, D.C., and Bibb, J.A., Nat. Neurosci., 2007, vol. 10, no. 7, pp. 880–886.

    Article  PubMed  CAS  Google Scholar 

  44. Cheung, Z.H., Chin, W.H., Chen, Y., Ng, Y.P., and Ip, N.Y., PLoS Biol., 2007, vol. 5, no. 4: e63.

    Article  PubMed  Google Scholar 

  45. Namba, T., Ming, G.L., Song, H., Waga, C., Enomoto, A., Kaibuchi, K., Kohsaka, S., and Uchino, S., J. Neurochem., 2011, vol. 118, no. 1, pp. 34–44.

    Article  PubMed  CAS  Google Scholar 

  46. Herold, S., Jagasia, R., Merz, K., Wassmer, K., and Lie, D.C., Mol. Cell. Neurosci., 2011, vol. 46, no. 1, pp. 79–88.

    Article  PubMed  CAS  Google Scholar 

  47. Li, F., Zhang, Y.Y., Jing, X.M., Yan, C.H., and Shen, X.M., Behav. Brain Res., 2010, vol. 207, no. 2, pp. 458–465.

    Article  PubMed  Google Scholar 

  48. Krol, J., Loedige, I., and Filipowicz, W., Nat. Rev. Genet., 2010, vol. 11, pp. 597–610.

    PubMed  CAS  Google Scholar 

  49. Liu, X.S., Chopp, M., Zhang, R.L., Tao, T., Wang, X.L., Kassis, H., Hozeska-Solgot, A., Zhang, L., Chen, C., and Zhang, Z.G., PLoS One, 2011, vol. 6, no. 8: e23461.

    Google Scholar 

  50. Hsieh, J. and Eisch, A.J., Neurobiol. Dis., vol. 39, no. 1, pp. 73–84.

  51. Sierra, A., Encinas, J.M., and Maletic-Savatic, M., Front. Neurosci., 2011, vol. 5: 47.

    Article  PubMed  Google Scholar 

  52. Couillard-Despres, S., Wuertinger, C., Kandasamy, M., Caioni, M., Stadler, K., Aigner, R., Bogdahn, U., and Aigner, l., Mol. Psychiatry, 2009, vol. 14, pp. 856–864.

    Article  PubMed  CAS  Google Scholar 

  53. Lucassen, P.J., Stumpel, M.W., Wang, Q., and Aronica, E., Neuropharmacology, 2010, vol. 58, pp. 940–949.

    Article  PubMed  CAS  Google Scholar 

  54. Cuppini, R., Bucherelli, C., Ambrogini, P., Ciuffoli, S., Orsini, L., Ferri, P., and Baldi, E., Hippocampus, 2006, vol. 16, no. 2, pp. 141–148.

    Article  PubMed  Google Scholar 

  55. Gould, E., Reeves, A.J., Fallah, M., Tanapat, P., Gross, C.G., and Fuchs, E., Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 5263–5267.

    Article  PubMed  CAS  Google Scholar 

  56. Lichtenwalner, R.J., Forbes, M.E., Bennett, S.A., Lynch, C.D., Sonntag, W.E., and Riddle, D.R., Neuroscience, 2001, vol. 107, pp. 603–613.

    Article  PubMed  CAS  Google Scholar 

  57. Shetty, A.K., Hattiangady, B., and Shetty, G.A., Glia, 2005, vol. 51, no. 3, pp. 173–186.

    Article  PubMed  Google Scholar 

  58. Govoni, S., Amadio, M., Battaini, F., and Pascale, A., Curr. Pharm. Des., 2010, vol. 16, no. 6, pp. 660–671.

    Article  PubMed  CAS  Google Scholar 

  59. Artegiani, B. and Calegari, F., Aging (Albany, New York), 2012, vol. 4, no. 3, pp. 176–186.

    Google Scholar 

  60. Zhu, D.Y., Liu, S.H., Sun, H.S., and Lu, Y.M., J. Neurosci., 2003, vol. 23, no. 1, pp. 223–229.

    PubMed  CAS  Google Scholar 

  61. Liu, X.S., Chopp, M., Zhang, R.L., Hozeska-Solgot, A., Gregg, S.C., Buller, B., Lu, M., and Zhang, Z.G., J. Biol. Chem., 2009, vol. 284, no. 34, pp. 22680–22689.

    Article  PubMed  CAS  Google Scholar 

  62. Sun, X., Zhang, Q.W., Xu, M. Guo J.J., Shen, S.W., Wang, Y.Q., and Sun, F.Y., Neurobiol. Dis., 2012, vol. 45, no. 1, pp. 601–609.

    Article  PubMed  Google Scholar 

  63. Wang, X., Mao, X., Xie, L., Sun, F., Greenberg, D.A., and Jin, K., PLoS One, 2012, vol. 7, no. 6: e38932.

    Google Scholar 

  64. Nakayama, D., Matsuyama, T., Ishibashi-Ueda, H., Nakagomi, T., Kasahara, Y., Hirose, H., Kikuchi-Taura, A., Stern, D.M., Mori, H., and Taguchi, A., Eur. J. Neurosci., 2010, vol. 31, no. 1, pp. 90–98.

    Article  PubMed  Google Scholar 

  65. Macas, J., Nern, C., Plate, K.H., and Momma, S., J. Neurosci., 2006, vol. 26, pp. 13114–13119.

    Article  PubMed  CAS  Google Scholar 

  66. Jin, K., Wang, X., Xie, L., Mao, X.O., Zhu, W., Wang, Y., Shen, J., Mao, Y., Banwait, S., and Greenberg, D.A., Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 13198–13202.

    Article  PubMed  CAS  Google Scholar 

  67. Minger, S.L., Ekonomou, A., Carta, E.M., Chinoy, A., Perry, R.H., and Ballard, C.G., Regen. Med., 2007, vol. 2, no. 1, pp. 69–74.

    Article  PubMed  Google Scholar 

  68. Zhang, Z.G. and Chopp, M., Lancet Neurol., 2009, vol. 8, no. 5, pp. 491–500.

    Article  PubMed  Google Scholar 

  69. Tonchev, A.B., Arch. Ital. Biol., 2011, vol. 149, no. 2, pp. 225–231.

    PubMed  Google Scholar 

  70. Wang, L., Chopp, M., Zhang, R.L., Zhang, L., Letourneau, Y., Feng, Y.F., Jiang, A., Morris, D.C., and Zhang, Z.G., Neuroscience, 2009, vol. 158, no. 4, pp. 1356–1363.

    Article  PubMed  CAS  Google Scholar 

  71. Jin, K., Peel, A.L., Mao, X.O., Xie, L., Cottrell, B.A., Henshall, D.C., and Greenberg, D.A., Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no. 1, pp. 343–347.

    Article  PubMed  CAS  Google Scholar 

  72. Yu, Y., He, J., and Zhang, Y., Hippocampus, 2009, vol. 19, no. 12, pp. 1247–1253.

    Article  PubMed  Google Scholar 

  73. Demars, M., Hu, Y.S., Gadadhar, A., and Lazarov, O., J. Neurosci. Res., 2010, vol. 88, no. 10, pp. 2103–2117.

    Article  PubMed  CAS  Google Scholar 

  74. Crews, L., Patrick, C., Adame, A., Rockenstein, E., and Masliah, E., Cell Death Dis., 2011, vol. 2: e120.

  75. Shruster, A., Eldar-Finkelman, H., Melamed, E., and Offen, D., J. Neurochem., 2011, vol. 116, no. 4, pp. 522–559.

    Article  PubMed  CAS  Google Scholar 

  76. Rockenstein, E., Ubhi, K., Doppler, E., et al., J. Alzheimer’s Dis., vol. 27, no. 4, pp. 743–752.

  77. Gomazkov, O.A., Neirogenez kak adaptivnaya funktsiya mozga (Neurogenesis as Adaptive Brain Function), Moscow: IKAR, 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Gomazkov.

Additional information

Original Russian Text © O.A. Gomazkov, 2013, published in Neirokhimiya, 2013, Vol. 30, No. 4, pp. 273–288.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomazkov, O.A. Signaling molecules as regulators of neurogenesis in the adult brain. Neurochem. J. 7, 241–255 (2013). https://doi.org/10.1134/S1819712413040041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712413040041

Keywords

Navigation