Neurochemical Journal

, Volume 7, Issue 4, pp 241–255 | Cite as

Signaling molecules as regulators of neurogenesis in the adult brain

Review Articles

Abstract

Studies in the second half of the 20th century accumulated evidence that refuted the dogma that “nervous cells are not restored.” During the entire life of the body, neural stem cells or progenitors are continuously transformed and new structures, such as neurons, astrocytes, and oligodendrocytes, are integrated. Regulation of this process is complex and invariably interrelated with the adaptive capacities of the healthy, aging, and disabled brain. In this review, on the basis of a large body of data, we postulate the hypothesis of the adaptive mission of neurogenesis in the adult brain. We present the data of experimental and clinical studies as a scheme of phase transformation of brain stem cells and their role in adaptive processes. We summarize the data on the role of newborn neurons in the pathology of the ischemic, neurodegenerative, and aging processes. An important role is performed by signaling molecules, which are important integrators of brain adaptive functions. The scheme of the mechanisms of neurogenesis becomes clearer when one takes the large number of various signaling molecules involved in this regulation into account. Several levels of signaling may be noted, such as (a) neurotrophins and growth factors; (b) molecules of the transduction cascade; (c) molecules of transcription of a signal to the replication apparatus of the cell; and (d) epigenetic factors, which govern signaling polyphony. The new and practically important concept that is elaborated here is the thesis that these molecules may be used as “targets” for directed pharmacological therapeutic influence.

Keywords

neurogenesis neural stem cells transmitter phenotype signaling molecules neurotrophins neurodegenerative pathology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jones, E.G. and Mendell, L.M., Science, 1999, vol. 284, no. 5415, p. 739.PubMedCrossRefGoogle Scholar
  2. 2.
    Decimo, I., Bifari, F., Krampera, M., and Fumagalli, G., Curr. Pharm. Des., 2012, vol. 18, no. 13, pp. 1755–1783.PubMedCrossRefGoogle Scholar
  3. 3.
    Kempermann, G., Adult Neurogenesis. 2. Stem Cells and Neuronal Development in the Adult Brain, Oxford: Oxford University Press, 2011.Google Scholar
  4. 4.
    Cameron, H.A. and McKay, R.D., J. Comp. Neurol., 2001.Google Scholar
  5. 5.
    Gould, E., Beylin, A., Tanapat, P., Reeves, A., and Shors, T.J., Nat. Neurosci., 1999, vol. 2, pp. 260–265.PubMedCrossRefGoogle Scholar
  6. 6.
    Shors, T.J., Miesegaes, G., Beylin, A., Zhao, M., Rydel, T., and Gould, E., Nature, 2001, vol. 410, pp. 372–376.PubMedCrossRefGoogle Scholar
  7. 7.
    Kuhn, H.G., Biebl, M., Wilhelm, D., Li, M., Friedlander, R.M., and Winkler, J., Eur. J. Neurosci., 2005, vol. 22, no. 8, pp. 1907–1915.PubMedCrossRefGoogle Scholar
  8. 8.
    Toni, N., Laplagne, D.A., Zhao, C., Lombardi, G., Ribak, C.E., Gage, F.H., and Schinder, A.F., Nat. Neurosci., 2008, vol. 11, pp. 901–907.PubMedCrossRefGoogle Scholar
  9. 9.
    Cheyne, J.E., Grant, L., Butler-Munro, C., Foote, J.W., Connor, B., and Montgomery, J.M., Mol. Cell Neurosci., 2011, vol. 47, no. 3, pp. 203–214.PubMedCrossRefGoogle Scholar
  10. 10.
    Massa, F., Koehl, M., Wiesner, T., Grosjean, N., Revest, J.M., Piazza, P.V., Abrous, D.N., and Oliet, S.H., Proc. Natl. Acad. Sci. USA, 2011, vol. 108, no. 16, pp. 6644–6649.PubMedCrossRefGoogle Scholar
  11. 11.
    Coras, R., Siebzehnrubl, F.A., Pauli, E., Huttner, H.B., Njunting, M., Kobow, K., Villmann, C., Hahnen, E., Neuhuber, W., Weigel, D., Buchfelder, M., Stefan, H., Beck, H., Steindler, D.A., and Blumcke, I., Brain, 2010, vol. 133, no. 11, pp. 3359–3372.PubMedCrossRefGoogle Scholar
  12. 12.
    Sahay, A. and Hen, R., Novartis Found. Symp., 2008, vol. 289, pp. 152–160.PubMedGoogle Scholar
  13. 13.
    Deng, W., Aimone, J.B., and Gage F.H., Nat. Rev. Neurosci., 2010, vol. 11, no. 5, pp. 339–350.PubMedCrossRefGoogle Scholar
  14. 14.
    Hernández-Rabaza, V., Llorens-Martin, M., Velázquez-Sanchez, C., Hernández-Rabaza, V., Llorens-Martin, M., Velazquez-Sanchez, C., Ferragud, A., Arcusa, A., Gumus, H.G., Gómez-Pinedo, U., Perez-Villalba, A., Rosello, J., Trejo, J.L., Barcia, J.A., and Canales, J.J., Neuroscience, 2009, vol. 159, no. 1, pp. 59–66.PubMedCrossRefGoogle Scholar
  15. 15.
    Pan, Y.W., Chan, G.C., Kuo, C.T., Storm, D.R., and Xia, Z., J. Neurosci., 2012, vol. 32, no. 19, pp. 6444–6455.PubMedCrossRefGoogle Scholar
  16. 16.
    Ge, S., Yang, C.H., Hsu, K.S., Ming, G.L., and Song, H., Neuron, 2007, vol. 54, no. 4, pp. 559–566.PubMedCrossRefGoogle Scholar
  17. 17.
    Bruel-Jungerman, E., Davis, S., Rampon, C., and Laroche, S., J. Neurosci., 2006, vol. 26, no. 22, pp. 5888–5893.PubMedCrossRefGoogle Scholar
  18. 18.
    Merlo, S., Canonico, P.L., and Sortino, M.A., Neuropharmacology, 2011, vol. 60, no. 6, pp. 892–900.PubMedCrossRefGoogle Scholar
  19. 19.
    Banasr, M., Hery, M., Printemps, R., and Daszuta, A., Neuropsychopharmacology, 2004, vol. 29, pp. 450–460.PubMedCrossRefGoogle Scholar
  20. 20.
    Giachino, C., De Marchis, S., Giampietro, C., Parlato, R., Perroteau, I., Schutz, G., Fasolo, A., and Peretto, P., J. Neurosci., 2005, vol. 25, pp. 10105–10118.PubMedCrossRefGoogle Scholar
  21. 21.
    Fukui, M., Nakamichi, N., Yoneyama, M., Ozawa, S., Fujimori, S., Takahata, Y., Nakamura, N., Taniura, H., and Yoneda, Y., J. Cell Physiol., 2008, vol. 216, no. 2, pp. 507–519.PubMedCrossRefGoogle Scholar
  22. 22.
    Yoneyama, M., Fukui, M., Nakamichi, N., Kitayama, T., Taniura, H., and Yoneda, Y., J. Neurochem., 2007, vol. 100, no. 6, pp. 1667–1679.PubMedGoogle Scholar
  23. 23.
    Brazel, C.Y., Nunez, J.L., Yang, Z., and Levison, S.W., Neuroscience, 2005, vol. 131, pp. 55–65.PubMedCrossRefGoogle Scholar
  24. 24.
    Nakamichi, N., Takarada, T., and Yoneda, Y., J. Pharmacol. Sci., 2009, vol. 110, no. 2, pp. 133–149.PubMedCrossRefGoogle Scholar
  25. 25.
    Kotani, S., Yamauchi, T., Teramoto, T., and Ogura, H., Chem. Biol. Interact., 2008, vol. 175, nos. 1-3, pp. 227–230.PubMedCrossRefGoogle Scholar
  26. 26.
    Shetty, A.K., Hippocampus, 2004, vol. 14, no. 5, pp. 595–614.PubMedCrossRefGoogle Scholar
  27. 27.
    Gómez-Lira, G., Lamas, M., Romo-Parra, H., and Gutiérrez, R., J. Neurosci., 2005, vol. 25, no. 30, pp. 6939–6946.PubMedCrossRefGoogle Scholar
  28. 28.
    Arenas, E., Ann. N.Y. Acad. Sci., 2005, vol. 1049, pp. 51–66.PubMedCrossRefGoogle Scholar
  29. 29.
    Gomazkov, O.A., Neirotroficheskaya regulyatsiya i stvolovye kletki mozga (Neurotrophic Regulation and Stem Cells of the Brain), Moscow: IKAR, 2006.Google Scholar
  30. 30.
    Kirschenbaum, B. and Goldman, S.A., Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 210–214.PubMedCrossRefGoogle Scholar
  31. 31.
    Zigova, T., Pencea, V., Wiegand, S.J., and Luskin, M.B., Mol. Cell. Neurosci., 1998, vol. 11, pp. 234–245.PubMedCrossRefGoogle Scholar
  32. 32.
    Pencea, V., Bingaman, K.D., Wiegand, S.J., and Luskin, M.B., J. Neurosci., 2001, vol. 21, pp. 6706–6717.PubMedGoogle Scholar
  33. 33.
    Bath, K.G., Mandairon, N., Jing, D., Rajagopal, R., Kapoor, R., Chen, Z.Y., Khan, T., Proenca, C.C., Kraemer, R., Cleland, T.A., Hempstead, B.L., Chao, M.V., and Lee, F.S., J. Neurosci., 2008, vol. 28, pp. 2383–2393.PubMedCrossRefGoogle Scholar
  34. 34.
    Bergami, M., Rimondini, R., Santi, S., Blum, R., Gotz, M., and Canossa, M., Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 15570–15575.PubMedCrossRefGoogle Scholar
  35. 35.
    Snapyan, M., Lemasson, M., Brill, M.S., Blais, M., Massouh, M., Ninkovic, J., Gravel, C., Berthod, F., Gotz, M., Barker, P.A., Parent, A., and Saghatelyan, A., J. Neurosci., 2009, vol. 29, pp. 4172–4188.PubMedCrossRefGoogle Scholar
  36. 36.
    Tropepe, V., Craig, C.G., Morshead, C.M., and van der Kooy, D., J. Neurosci., 1997, vol. 17, pp. 7850–7859.PubMedGoogle Scholar
  37. 37.
    Zhao, M., Li, D., Shimazu, K., Zhou, Y.X., Lu, B., and Deng, C.X., Biol. Psychiatry, 2007, vol. 62, pp. 381–390.PubMedCrossRefGoogle Scholar
  38. 38.
    Wang, Y.Q., Jin, K., Mao, X.O., Xie, L., Banwait, S., Marti, H.H., and Greenberg, D.A., J. Neurosci. Res., 2007, vol. 85, pp. 740–747.PubMedCrossRefGoogle Scholar
  39. 39.
    Schabitz, W.R., Steigleder, T., Cooper-Kuhn, C.M., Schwab, S., Sommer, C., Schneider, A., and Kuhn, H.G., Stroke, 2007, vol. 38, pp. 2165–2172.PubMedCrossRefGoogle Scholar
  40. 40.
    Liao, L., Pilotte, J., Xu, T., Wong, C.C., Edelman, G.M., Vanderklish, P., and Yates, J.R., 3rd, J. Proteome Res., 2007, vol. 6, no. 3, pp. 1059–1071.PubMedCrossRefGoogle Scholar
  41. 41.
    Berezovska, O., Xia, M.Q., and Hyman, B.T., J. Neuropathol. Exp. Neurol., 1998, vol. 57, pp. 738–745.PubMedCrossRefGoogle Scholar
  42. 42.
    Xiao, M.J., Han, Z., Shao, B., and Jin, K., Int. J. Physiol. Pathophysiol. Pharmacol., 2009, vol. 1, no. 2, p. 192–202.PubMedGoogle Scholar
  43. 43.
    Hawasli, A.H., Benavides, D.R., Nguyen, C., Kansy, J.W., Hayashi, K., Chambon, P., Greengard, P., Powell, C.M., Cooper, D.C., and Bibb, J.A., Nat. Neurosci., 2007, vol. 10, no. 7, pp. 880–886.PubMedCrossRefGoogle Scholar
  44. 44.
    Cheung, Z.H., Chin, W.H., Chen, Y., Ng, Y.P., and Ip, N.Y., PLoS Biol., 2007, vol. 5, no. 4: e63.PubMedCrossRefGoogle Scholar
  45. 45.
    Namba, T., Ming, G.L., Song, H., Waga, C., Enomoto, A., Kaibuchi, K., Kohsaka, S., and Uchino, S., J. Neurochem., 2011, vol. 118, no. 1, pp. 34–44.PubMedCrossRefGoogle Scholar
  46. 46.
    Herold, S., Jagasia, R., Merz, K., Wassmer, K., and Lie, D.C., Mol. Cell. Neurosci., 2011, vol. 46, no. 1, pp. 79–88.PubMedCrossRefGoogle Scholar
  47. 47.
    Li, F., Zhang, Y.Y., Jing, X.M., Yan, C.H., and Shen, X.M., Behav. Brain Res., 2010, vol. 207, no. 2, pp. 458–465.PubMedCrossRefGoogle Scholar
  48. 48.
    Krol, J., Loedige, I., and Filipowicz, W., Nat. Rev. Genet., 2010, vol. 11, pp. 597–610.PubMedGoogle Scholar
  49. 49.
    Liu, X.S., Chopp, M., Zhang, R.L., Tao, T., Wang, X.L., Kassis, H., Hozeska-Solgot, A., Zhang, L., Chen, C., and Zhang, Z.G., PLoS One, 2011, vol. 6, no. 8: e23461.Google Scholar
  50. 50.
    Hsieh, J. and Eisch, A.J., Neurobiol. Dis., vol. 39, no. 1, pp. 73–84.Google Scholar
  51. 51.
    Sierra, A., Encinas, J.M., and Maletic-Savatic, M., Front. Neurosci., 2011, vol. 5: 47.PubMedCrossRefGoogle Scholar
  52. 52.
    Couillard-Despres, S., Wuertinger, C., Kandasamy, M., Caioni, M., Stadler, K., Aigner, R., Bogdahn, U., and Aigner, l., Mol. Psychiatry, 2009, vol. 14, pp. 856–864.PubMedCrossRefGoogle Scholar
  53. 53.
    Lucassen, P.J., Stumpel, M.W., Wang, Q., and Aronica, E., Neuropharmacology, 2010, vol. 58, pp. 940–949.PubMedCrossRefGoogle Scholar
  54. 54.
    Cuppini, R., Bucherelli, C., Ambrogini, P., Ciuffoli, S., Orsini, L., Ferri, P., and Baldi, E., Hippocampus, 2006, vol. 16, no. 2, pp. 141–148.PubMedCrossRefGoogle Scholar
  55. 55.
    Gould, E., Reeves, A.J., Fallah, M., Tanapat, P., Gross, C.G., and Fuchs, E., Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 5263–5267.PubMedCrossRefGoogle Scholar
  56. 56.
    Lichtenwalner, R.J., Forbes, M.E., Bennett, S.A., Lynch, C.D., Sonntag, W.E., and Riddle, D.R., Neuroscience, 2001, vol. 107, pp. 603–613.PubMedCrossRefGoogle Scholar
  57. 57.
    Shetty, A.K., Hattiangady, B., and Shetty, G.A., Glia, 2005, vol. 51, no. 3, pp. 173–186.PubMedCrossRefGoogle Scholar
  58. 58.
    Govoni, S., Amadio, M., Battaini, F., and Pascale, A., Curr. Pharm. Des., 2010, vol. 16, no. 6, pp. 660–671.PubMedCrossRefGoogle Scholar
  59. 59.
    Artegiani, B. and Calegari, F., Aging (Albany, New York), 2012, vol. 4, no. 3, pp. 176–186.Google Scholar
  60. 60.
    Zhu, D.Y., Liu, S.H., Sun, H.S., and Lu, Y.M., J. Neurosci., 2003, vol. 23, no. 1, pp. 223–229.PubMedGoogle Scholar
  61. 61.
    Liu, X.S., Chopp, M., Zhang, R.L., Hozeska-Solgot, A., Gregg, S.C., Buller, B., Lu, M., and Zhang, Z.G., J. Biol. Chem., 2009, vol. 284, no. 34, pp. 22680–22689.PubMedCrossRefGoogle Scholar
  62. 62.
    Sun, X., Zhang, Q.W., Xu, M. Guo J.J., Shen, S.W., Wang, Y.Q., and Sun, F.Y., Neurobiol. Dis., 2012, vol. 45, no. 1, pp. 601–609.PubMedCrossRefGoogle Scholar
  63. 63.
    Wang, X., Mao, X., Xie, L., Sun, F., Greenberg, D.A., and Jin, K., PLoS One, 2012, vol. 7, no. 6: e38932.Google Scholar
  64. 64.
    Nakayama, D., Matsuyama, T., Ishibashi-Ueda, H., Nakagomi, T., Kasahara, Y., Hirose, H., Kikuchi-Taura, A., Stern, D.M., Mori, H., and Taguchi, A., Eur. J. Neurosci., 2010, vol. 31, no. 1, pp. 90–98.PubMedCrossRefGoogle Scholar
  65. 65.
    Macas, J., Nern, C., Plate, K.H., and Momma, S., J. Neurosci., 2006, vol. 26, pp. 13114–13119.PubMedCrossRefGoogle Scholar
  66. 66.
    Jin, K., Wang, X., Xie, L., Mao, X.O., Zhu, W., Wang, Y., Shen, J., Mao, Y., Banwait, S., and Greenberg, D.A., Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 13198–13202.PubMedCrossRefGoogle Scholar
  67. 67.
    Minger, S.L., Ekonomou, A., Carta, E.M., Chinoy, A., Perry, R.H., and Ballard, C.G., Regen. Med., 2007, vol. 2, no. 1, pp. 69–74.PubMedCrossRefGoogle Scholar
  68. 68.
    Zhang, Z.G. and Chopp, M., Lancet Neurol., 2009, vol. 8, no. 5, pp. 491–500.PubMedCrossRefGoogle Scholar
  69. 69.
    Tonchev, A.B., Arch. Ital. Biol., 2011, vol. 149, no. 2, pp. 225–231.PubMedGoogle Scholar
  70. 70.
    Wang, L., Chopp, M., Zhang, R.L., Zhang, L., Letourneau, Y., Feng, Y.F., Jiang, A., Morris, D.C., and Zhang, Z.G., Neuroscience, 2009, vol. 158, no. 4, pp. 1356–1363.PubMedCrossRefGoogle Scholar
  71. 71.
    Jin, K., Peel, A.L., Mao, X.O., Xie, L., Cottrell, B.A., Henshall, D.C., and Greenberg, D.A., Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no. 1, pp. 343–347.PubMedCrossRefGoogle Scholar
  72. 72.
    Yu, Y., He, J., and Zhang, Y., Hippocampus, 2009, vol. 19, no. 12, pp. 1247–1253.PubMedCrossRefGoogle Scholar
  73. 73.
    Demars, M., Hu, Y.S., Gadadhar, A., and Lazarov, O., J. Neurosci. Res., 2010, vol. 88, no. 10, pp. 2103–2117.PubMedCrossRefGoogle Scholar
  74. 74.
    Crews, L., Patrick, C., Adame, A., Rockenstein, E., and Masliah, E., Cell Death Dis., 2011, vol. 2: e120.Google Scholar
  75. 75.
    Shruster, A., Eldar-Finkelman, H., Melamed, E., and Offen, D., J. Neurochem., 2011, vol. 116, no. 4, pp. 522–559.PubMedCrossRefGoogle Scholar
  76. 76.
    Rockenstein, E., Ubhi, K., Doppler, E., et al., J. Alzheimer’s Dis., vol. 27, no. 4, pp. 743–752.Google Scholar
  77. 77.
    Gomazkov, O.A., Neirogenez kak adaptivnaya funktsiya mozga (Neurogenesis as Adaptive Brain Function), Moscow: IKAR, 2013.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Orekhovich Institute of Biomedical ChemistryRussian Academy of Medical SciencesMoscowRussia
  2. 2.MoscowRussia

Personalised recommendations