Neurochemical Journal

, Volume 7, Issue 2, pp 89–97 | Cite as

The specific features of free-radical processes and the antioxidant defense in the adult brain

Review Articles

Abstract

Here we review the specific features of free-radical processes in the CNS. We review the pathways of the generation of reactive oxygen species in nervous nerve tissue, the specific parameters of substrates of free-radical oxidation, and the contents and activities of various antioxidants. We briefly describe some physiological effects of reactive oxygen species in the nervous tissue.

Keywords

free radicals free-radical oxidation antioxidant system, antioxidant defense low molecular antioxidants CNS brain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Finkel, T. and Holbrook, N.J., Nature, 2000, vol. 408, p. 239–247.PubMedCrossRefGoogle Scholar
  2. 2.
    Droge, W., Physiol. Rev., 2002, vol. 82, p. 47–95.PubMedGoogle Scholar
  3. 3.
    Rhee, S.G., Science, 2006, vol. 312, p. 1882–1883.PubMedCrossRefGoogle Scholar
  4. 4.
    Valko, M., Leibfritz, D., Moncol, J., Cronin, M., Mazur, M., and Telser, J., Int. J. Bioch. Cell Biol., 2007, vol. 39, p. 44–84.CrossRefGoogle Scholar
  5. 5.
    Martinez-Cayuela, H., Biochimie, 1995, vol. 77, no. 3, p. 147–161.PubMedCrossRefGoogle Scholar
  6. 6.
    Bergamini, C., Gambetti, S., Dondi, A., and Cervellati, C., Curr. Pharm. Des., 2004, vol. 10, no. 14, p. 1611–1626.PubMedCrossRefGoogle Scholar
  7. 7.
    Chong, Z., Li, F., and Maiese, K., Prog. Neurobiol., 2005, vol. 75, pp. 207–246.PubMedCrossRefGoogle Scholar
  8. 8.
    Lykkesfeldt, J. and Svendsen, O., Vet. J., 2007, vol. 173, pp. 502–511.PubMedCrossRefGoogle Scholar
  9. 9.
    Eshchenko, N.D., Biokhimiya mozga (Biochemistry of the Brain), Eds., Ashmarin, I.P., Stukalov, P.V., and Eshchenko, N.D., St. Petersburg, 1999, pp. 124–169.Google Scholar
  10. 10.
    Erecinska, M., Cherian S., Silver I.A, Prog. Neurobiol., 2004, vol. 73, pp. 397–445.PubMedCrossRefGoogle Scholar
  11. 11.
    Reiter, R.J., FASEB J., 1995, vol. 9, pp. 526–533.PubMedGoogle Scholar
  12. 12.
    Halliwell, B., J. Neurochem., 2006, vol. 97, pp. 1634–1658.PubMedCrossRefGoogle Scholar
  13. 13.
    Putilina, F.E., Galkina, O.V., Eshchenko, N.D., Dizhe, G.P., and Krasovskaya, I.E., Svobodnoradikal’noe okislenie (Free Radical Oxidation), Ed., Eshchenko, N.D., St. Petersburg: Izd. SPbGU, 2008.Google Scholar
  14. 14.
    Shohami, E., Beit-Yannai, E., Horowitz, M., and Kohen, R., J. Cereb. Blood Flow Metab., 1997, vol. 17, pp. 1007–1019.PubMedCrossRefGoogle Scholar
  15. 15.
    Dringen, R., Pawlowski, P.G., and Hirrlinger, J., J. Neurosci. Res., 2005, vol. 79, pp. 157–165.PubMedCrossRefGoogle Scholar
  16. 16.
    Phillis, J.W., Horrocks, L., and Farooqui, A., Brain Res. Rev., 2006, vol. 52, pp. 201–243.PubMedCrossRefGoogle Scholar
  17. 17.
    Kudin, A.P., Malinska, D., and Kunz, W.S., Biochim. Biophys. Acta, 2008, vol. 1777, pp. 689–695.PubMedCrossRefGoogle Scholar
  18. 18.
    Fraser, P.A., Free Rad. Biol. Med., 2011, vol. 51, pp. 967–977.PubMedCrossRefGoogle Scholar
  19. 19.
    Miksys, S. and Tyndale, R.F., Drug. Metab. Rev., 2004, vol. 36, pp. 313–333.PubMedCrossRefGoogle Scholar
  20. 20.
    Boldyrev, A.A., Karnozin (Carnosine), Moscow: Izd.MGU, 1998.Google Scholar
  21. 21.
    Kosenko, E., Venediktova, N., Kaminsky, Y., Montoliu, C., and Felipo, V., Brain Res., 2003, vol. 981, pp. 193–200.PubMedCrossRefGoogle Scholar
  22. 22.
    Noh, K.-M. and Koh, J.-Y., J. Neurosci., 2000, vol. 20, pp. 1–5.Google Scholar
  23. 23.
    Bedard, K. and Krause, K., Physiol. Rev., 2007, vol. 87, pp. 245–313.PubMedCrossRefGoogle Scholar
  24. 24.
    Brown, D.I. and Griendling, K.K., Free Rad. Biol. Med., 2009, vol. 47, pp. 1239–1253.PubMedCrossRefGoogle Scholar
  25. 25.
    Kishida, K.T., Pao, M., Holland, S.M., and Klann, E., J. Neurochem., 2005, vol. 94, pp. 299–306.PubMedCrossRefGoogle Scholar
  26. 26.
    Infanger, D.W., Sharma, R.V., and Davisson, R.L., Antiox. Redox Signaling, 2006, vol. 8, nos. 9–10, pp. 1583–1596.CrossRefGoogle Scholar
  27. 27.
    Guix, F.X., Uribesalgo, I., Coma, M., and Munoz, F.J., Progr. Neurobiol., 2005, vol. 76, pp. 126–152.CrossRefGoogle Scholar
  28. 28.
    Reutov, V.P., Sorokina, E.G., Okhotin, V.E., and Kositsyn, N.S., Tsiklicheskie prevrashcheniya oksida azota v organizme mlekopitayushchikh (Cyclic Conversions of Nitric Oxide in the Mammalian Body), Moscow: Nauka, 1997.Google Scholar
  29. 29.
    Campese, V., Sindhu, R., Ye, S., Bai, Y., Vaziri, N., and Jabbari, B., Brain Res., 2007, vol. 1134, pp. 27–32.PubMedCrossRefGoogle Scholar
  30. 30.
    Rodrigo, J., Fernandez, A.P., Serrano, J., Peinado, M.A., and Martinez, A., Free Rad. Biol. Med, 2005, vol. 39, pp. 26–50.PubMedCrossRefGoogle Scholar
  31. 31.
    Boldyrev, A.A., Usp. Fiziol. Nauk, 2003, vol. 34, no. 3, pp. 21–34.PubMedGoogle Scholar
  32. 32.
    Proskuryakov, S.Ya., Konoplyannikov, A.G., and Ivannikov, A.I., Usp. Sovrem. Biol., 1999, vol. 119, no. 4, pp. 380–395.Google Scholar
  33. 33.
    Gal, S., Zheng, H., Fridkin, M., and Youdim, M., J. Neurochem., 2005, vol. 95, pp. 79–88.PubMedCrossRefGoogle Scholar
  34. 34.
    Marchitti, S.A., Deitrich, R.A., and Vasilion, V., Pharmacol. Rev., 2007, vol. 59, pp. 125–150.PubMedCrossRefGoogle Scholar
  35. 35.
    Tolleson, W.H., Encyclopedia of Neurosci., Ed. Squire, L.R., Elsevier Ltd., 2009, Pt. 13, pp. 2288–2294.Google Scholar
  36. 36.
    Parent, M. and Parent, A., Can. J. Neurol. Sci., 2010, vol. 37, no. 3, pp. 313–319.PubMedGoogle Scholar
  37. 37.
    Tumanova, S.Yu., Biokhimiya mozga (Biochemistry of the Brain), Eds., Ashmarin, I.P., Stukalov, P.V., and Eshchenko, N.D., St. Petersburg, 1999, pp. 81–124.Google Scholar
  38. 38.
    Neuringer, M., Anderson, G., and Connor, W., Ann. Rev. Nutrit., 1988, vol. 8, pp. 517–541.CrossRefGoogle Scholar
  39. 39.
    Farooqui, A.A., Beneficial effects of fish oil on human brain, Springer, 2009, pp. 151–187.CrossRefGoogle Scholar
  40. 40.
    Rehncrona, S., Smith, D., and Akesson, B., J. Neurochem., 1980, vol. 34, no. 6, pp. 1630–1638.PubMedCrossRefGoogle Scholar
  41. 41.
    Waterfall, A.H., Singh, G., Fry, J., and Marsden, C.A., Neurosci. Let., 1995, vol. 200, no. 1, pp. 69–72.CrossRefGoogle Scholar
  42. 42.
    Noda, J., McGeer, P., and McGeer, E., J. Neurochem., 1983, vol. 40, no. 5, pp. 1329–1332.PubMedCrossRefGoogle Scholar
  43. 43.
    Mizuno, Y. and Ohta, K., J. Neurochem., 1986, vol. 46, no. 5, pp. 1344–1352.CrossRefGoogle Scholar
  44. 44.
    Samson, J., Devi, R., Ravindran, R., and Senthilvelan, M., Environmental Toxicol. Pharmacol., 2005, vol. 20, pp. 142–148.CrossRefGoogle Scholar
  45. 45.
    Chong, Z.Z., Li, F., and Maiese, K., Progr. Neurobiol., 2005, vol. 75, pp. 207–246.CrossRefGoogle Scholar
  46. 46.
    Mariani, E., Polidori, M.C., Cherubini, A., and Mecocci, P., J. Chromatography B, 2005, vol. 827, pp. 65–75.CrossRefGoogle Scholar
  47. 47.
    Dubinina, E.E., Produkty metabolizma kisloroda v funktsional’noi aktivnosti kletok (zhizn’ i smert’, sozidanie i razrushenie). Fiziologicheskie i klinikobiokhimicheskie aspekty (Products of Oxygen Metabolism in Functional Activity of Cells (Life and Death, Creation and Destruction). Physiological and Clinico-Biochemical Aspects), St. Petersburg: Izd. Meditsinskaya pressa, 2006.Google Scholar
  48. 48.
    Aizenman, E., Neurosci. Let., 1995, vol. 189, pp. 57–59.CrossRefGoogle Scholar
  49. 49.
    Agbas, A., Chen, X., Hong, O., Kumar, K.N., and Michaelis, E.K., Free Rad. Biol. Med., 2002, vol. 32, pp. 512–524.PubMedCrossRefGoogle Scholar
  50. 50.
    Rouault, T.A. and Cooperman, S., Seminars in Pediatric Neurol., 2006, vol. 13, no. 3, pp. 142–148.CrossRefGoogle Scholar
  51. 51.
    Ke, Y. and Qian, Z.M., Progr. Neurobiol., 2007, vol. 83, pp. 149–173.CrossRefGoogle Scholar
  52. 52.
    Singh, S. and Hider, R.C., in Free Radical Damage and its Control, Eds., Rice-Evans, C.A. and Burdon, R, Elsevier, 1994, vol. 28, pp. 189–217.CrossRefGoogle Scholar
  53. 53.
    Zelko, I.N., Mariani, T.J., and Folz, R.J., Free Rad. Biol. Med., 2002, vol. 33, pp. 337–349.PubMedCrossRefGoogle Scholar
  54. 54.
    Miller, A.-F., Curr. Opin. Chem. Biol., 2004, vol. 8, pp. 162–168.PubMedCrossRefGoogle Scholar
  55. 55.
    Johnson, F. and Giulivi, C. Mol., Aspects Med., 2005, vol. 26, pp. 340–352.CrossRefGoogle Scholar
  56. 56.
    Nakano, M., Methods Enzymol., 1990, vol. 186, pp. 227–232.PubMedCrossRefGoogle Scholar
  57. 57.
    Blomgren, K. and Hagberg, H., Free Rad. Biol. Med., 2006, vol. 40, pp. 388–397.PubMedCrossRefGoogle Scholar
  58. 58.
    Culotta, V.C., Yang, M., and O’Halloran, T.V., Biochim. Biophys. Acta, 2006, vol. 1763, pp. 747–758.PubMedCrossRefGoogle Scholar
  59. 59.
    Thiels, E., Urban, N., Gonzalez-Burgos, G., Kanterewicz, B., Barrionuevo, G., Chu, C., Oury, T., and Klann, E., J. Neurosci., 2000, vol. 20, pp. 7631–7639.PubMedGoogle Scholar
  60. 60.
    Ansari, K.A., Kaplan, E., and Shoeman, D., Growth Dev. Aging, 1989, vol. 53, no. 3, pp. 117–121.PubMedGoogle Scholar
  61. 61.
    Stroev, S.A. and Samoilov, M.O., Endogennye antioksidanty i gipoksicheskaya tolerantnost’ mozga (Endogenous Antioxidants and Hypoxic Tolerance of the Brain), St. Petersburg: Izd-vo In-ta fiziologii im. I.P. Pavlova RAN, 2006.Google Scholar
  62. 62.
    Ho, Y.S., Magnenat, J.L., Bronson, R.T., Cao, J., Gargano, M., Sugawara, M., and Funk, C., J Biol. Chem., 1997, vol. 272, pp. 16644–16651.PubMedCrossRefGoogle Scholar
  63. 63.
    Cohen, G., in: Oxidative Stress, Ed., Sies, H., Acad. Press., 1985, pp. 383–401.Google Scholar
  64. 64.
    Imai, H. and Nakagawa, Y., Free Rad. Biol. Med., 2003, vol. 34, pp. 145–169.PubMedCrossRefGoogle Scholar
  65. 65.
    Schweizer, U., Brauer, A.U., Kohrle, J., Nitsch, R., and Savaskan, N.E., Brain Res. Rev., 2004, vol. 45, pp. 164–178.PubMedCrossRefGoogle Scholar
  66. 66.
    Herbette, S., Roeckel-Drevet, P., and Drevet, J.R., FEBS J., 2007, vol. 274, pp. 2163–2180.PubMedCrossRefGoogle Scholar
  67. 67.
    Savaskan, N.E., Borchert, A., Brauer, A.U., and Kuhn, H., Free Rad. Biol. Med., 2007, vol. 43, pp. 191–201.PubMedCrossRefGoogle Scholar
  68. 68.
    Savaskan, N.E., Ufer, C., Kuhn, H., and Borchert, A., Biol. Chem., 2007, vol. 388, pp. 1007–1017.PubMedCrossRefGoogle Scholar
  69. 69.
    Zhua, Y., Carvey, P.M., and Ling, Z., Brain Res., 2006, vol. 1090, pp. 35–44.CrossRefGoogle Scholar
  70. 70.
    Crack, P.J., Taylor, J.M., Flentjar, N., de Haan, J., Hertzog, P., Iannello, R., and Kola, I., J. Neurochem., 2001, vol. 78, pp. 1389–1399.PubMedCrossRefGoogle Scholar
  71. 71.
    Hong, Y., Li, C.-H., Burgess, J.R., Chang, M., Salem, A., Srikumar, K., and Reddy, C.C., J. Biol. Chem., 1989, vol. 264, no. 23, pp. 13793–13800.Google Scholar
  72. 72.
    Oakley, A.J., Curr. Opin. Structural Biol., 2005, vol. 15, pp. 716–723.CrossRefGoogle Scholar
  73. 73.
    Gallagher, E.P., Gardner, J.L., and Barber, D.S., Biochem. Pharmacol., 2006, vol. 71, pp. 1619–1628.PubMedCrossRefGoogle Scholar
  74. 74.
    Backos, D.S., Franklin, C.C., and Reigan, P., Biochem. Pharmacol., 2012, vol. 83, pp. 1005–1012.PubMedCrossRefGoogle Scholar
  75. 75.
    Johnson, J.A., El Barbary, A., Kornguth, S.E., Brugge, J.F., and Siegel, F.L., J. Neurosci., 1993, vol. 13, no. 5, pp. 2013–2023.PubMedGoogle Scholar
  76. 76.
    Sagara, J. and Sugita, Y., Brain Res., 2001, vol. 902, pp. 190–197.PubMedCrossRefGoogle Scholar
  77. 77.
    Tamura, Y., Kataoka, Y., Cui, Y., Takamori, Y., Watanabe, Y., and Yamada, H., Neuroscience, 2007, vol. 148, pp. 535–540.PubMedCrossRefGoogle Scholar
  78. 78.
    Dringen, R., Prog. Neurobiol., 2000, vol. 62, pp. 649–671.PubMedCrossRefGoogle Scholar
  79. 79.
    Brannan, T.S., Maker, H.S., Raes, I., and Weiss, C., Brain Res., 1980, vol. 200, no. 2, pp. 474–477.PubMedCrossRefGoogle Scholar
  80. 80.
    Hayes, J.D., Milner, S.W., and Walker, S.W., Biochim. Biophys. Acta, 1989, vol. 994, pp. 21–29.PubMedCrossRefGoogle Scholar
  81. 81.
    Dringen, R., Gutterer, J., and Hirrlinger, J., Eur. J. Biochem., 2000, vol. 267, pp. 4912–4916.PubMedCrossRefGoogle Scholar
  82. 82.
    Dickinson, D., Moellering, D., Iles, K., Patel, R., Levonen, A., Wigley, A., Darley-Usmar, V., and Forman, H., Biol. Chem., 2003, vol. 384, pp. 527–537.PubMedCrossRefGoogle Scholar
  83. 83.
    Nordberg, J. and Arner, E.S., Free Rad. Biol. Med., 2001, vol. 31, pp. 1287–1312.PubMedCrossRefGoogle Scholar
  84. 84.
    Rybnikova, E., Damdimopoulos, A.E., Gustafsson, J.A., Spyrou, G., and Pelto-Huikko, M., Eur. J. Neurosci., 2000, vol. 12, pp. 1669–1678.PubMedCrossRefGoogle Scholar
  85. 85.
    Aon-Bertolino, M., Romero, J., Galeano, P., Holubiec, M., Badorrey, M., Saraceno, G., Hanschmann, E., Lillig, C., and Capani, F., Biochim. Biophys. Acta, 2011, vol. 1810, pp. 93–110.PubMedCrossRefGoogle Scholar
  86. 86.
    Drechsel, D. and Patel, M., J. Biol. Chem., 2010, vol. 285, no. 36, pp. 27850–27858.PubMedCrossRefGoogle Scholar
  87. 87.
    Atkinson, J., Epand, R.F., and Epand, R.M., Free Rad. Biol. Med., 2008, vol. 44, pp. 739–764.PubMedCrossRefGoogle Scholar
  88. 88.
    Nikushkin, E.V., Neirokhimiya, 1989, vol. 8, no. 1, pp. 124–145.Google Scholar
  89. 89.
    Makar, T.K., Nedergaard, M., Preuss, A., Gelbard, A.S., Perumal, A.S., and Cooper, A.J., J. Neurochem., 1994, vol. 62, pp. 45–53.PubMedCrossRefGoogle Scholar
  90. 90.
    Harrison, F.E. and May, J.M., Free Rad. Biol. Med., 2009, vol. 46, pp. 719–730.PubMedCrossRefGoogle Scholar
  91. 91.
    Harrison, F.E., Green, R.J., Dawes, S.M., and May, J.M., Brain Res., 2010, vol. 1348, pp. 181–186.PubMedCrossRefGoogle Scholar
  92. 92.
    Reiter, R.J., Prog. Neurobiol., 1998, vol. 56, pp. 359–384.PubMedCrossRefGoogle Scholar
  93. 93.
    Reiter, R.J., Acuna-Castroviejo, D., Tan, D.-X., and Burkhardt, S., Ann. N. Y. Acad. Sci., 2001, vol. 939, pp. 200–215.PubMedCrossRefGoogle Scholar
  94. 94.
    Hardeland, R., D.P. Cardinali, V. Srinivasan, D.W. Spence, G.M. Brown, S.R. Pandi-Perumal, Progr. Neurobiol., 2011, vol. 93, pp. 350–384.CrossRefGoogle Scholar
  95. 95.
    Reiter, R.J., Tan, D.-X., Manchester, L.C., and El Sawi, M.R., Ann. N. Y. Acad. Sci., 2002, vol. 959, pp. 238–250.PubMedCrossRefGoogle Scholar
  96. 96.
    Erin, A.N. and Gulyaeva, N.V., Byull. Eksp. Biol. Med., 1994, vol. 118, no. 10, pp. 343–348.Google Scholar
  97. 97.
    Finkel, T. and Holbrook, N.J., Nature, 2000, vol. 408, pp. 239–247.PubMedCrossRefGoogle Scholar
  98. 98.
    Knapp, L.T. and Klann, E., J. Neurosci. Res., 2002, vol. 70, pp. 1–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Heusler, P. and Boehmer, G., Brain Res., 2004, vol. 1024, pp. 104–112.PubMedCrossRefGoogle Scholar
  100. 100.
    O’Donnell, V.D. and Freeman, B.A., Circ. Res., 2001, vol. 88, pp. 12–21.PubMedCrossRefGoogle Scholar
  101. 101.
    Janssen-Heininger, Y., Mossman, B., Heintz, N., Forman, H., Kalyanaraman, B., Finkel, T., Stamler, J., Rhee, S., and van der Vliet, A., Free Rad. Biol. Med., 2008, vol. 45, pp. 1–17.PubMedCrossRefGoogle Scholar
  102. 102.
    Ray, P.D., Huang, B.-W., and Tsuji, Y., Cell. Signal., 2012, vol. 24, pp. 981–990.PubMedCrossRefGoogle Scholar
  103. 103.
    Hirrlinger, J. and Dringen, R., Brain Res. Rev., 2010, vol. S63, pp. 177–188.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.St. PetersburgRussia

Personalised recommendations