Advertisement

Neurochemical Journal

, 5:183 | Cite as

Alpha-tocopherol at nanomolar concentrations increases the viability of PC12 cells under oxidative stress conditions. The effects of modulation of signaling systems

  • T. V. Sokolova
  • M. P. Rychkova
  • I. O. Zakharova
  • I. V. Voynova
  • N. F. Avrova
Experimental Articles

Abstract

We found that long-term preincubation of neuronal-like PC12 cells with α-tocopherol at micro- as well as nanomolar concentrations significantly increased cell viability under oxidative stress conditions. We discovered that the protective effect of α-tocopherol increases with an increase in its concentration in the 1–100 nM range, while its effects at concentrations of 100 nM, 1, 10, and 100 μM were similar when α-tocopherol was applied to cells 12–18 h prior to H2O2. An important role in the protective effect of long-term pre-incubation of cells with α-tocopherol at various concentrations is probably related to its modulatory influence on the activities of protein kinase C, extracellular signal-activated protein kinase, and phosphatidylinositol 3-kinase. Short-term preincubation of PC12 cells with this antioxidant at nanomolar concentrations for 0.5 or 1.5 h practically did not influence cell viability, while the protective effect of α-tocopherol at micromolar concentrations was probably related to its ability to terminate free-radical reactions due to direct interactions with free radicals.

Keywords

α-tocopherol nanomolar concentrations protective effect PC12 cells oxidative stress signal systems 

References

  1. 1.
    Azzi, A., Biol. Med., 2007, vol. 43, no. 1, pp. 16–21.Google Scholar
  2. 2.
    Sen, C.K., Khanna, S., Roy, S., and Packer, L., J. Biol. Chem., 2000, vol. 275, no. 17, pp. 12749–12755.CrossRefGoogle Scholar
  3. 4.
    Osakada, F., Hashino, A., Kume, T., Katsuki, E.L., Kaneko, S., and Akaike, A., Eur. J. Pharmacol., 2003, vol. 465, pp. 15–22.PubMedCrossRefGoogle Scholar
  4. 4.
    Galli, F. and Azzi, A., Biofactors, 2010, vol. 36, no. 1, pp. 33–42.PubMedGoogle Scholar
  5. 5.
    Shirpoor, A., Minassian, S., Salami, S., Hassan, M., Ansari, K., and Yeghiazaryan, M., Food Chem., 2009, vol. 113, no. 1, pp. 115–120.CrossRefGoogle Scholar
  6. 6.
    Annahazi, A., Mracsko, E., Sule, Z., Karg, E., Penke, B., Bari, F., and Farcas, E., Eur. J. Pharmacol., 2007, vol. 571, nos. 2-3, pp. 120–128.PubMedCrossRefGoogle Scholar
  7. 7.
    Zingg, J.M., Mol. Aspects Med., 2007, vol. 28, nos. 5–6, pp. 481–506.PubMedCrossRefGoogle Scholar
  8. 8.
    Cuddihy, S.L., Ali, S.S., Muslec, E.S., Lusero, J., Kopp, S.J., Morrow, J.D., and Dugan, L.L., J. Biol. Chem., 2008, vol. 283, no. 11, pp. 6915–6924.PubMedCrossRefGoogle Scholar
  9. 9.
    Gaedicke, S., Zhang, X., Huebbe, P., Boesch-Saadatmandi, C., Lou, Y., Wiswedel, I., Gardemann, A., Frank, J., and Rimbach, J., Br. J. Nutr., 2009, vol. 102, pp. 398–406.PubMedCrossRefGoogle Scholar
  10. 10.
    Reich, E.E., Montine, K.S., Gross, M.D., Roberts, L.J., Swift, L.L., Morrow, J.D., and Montine, T.J., J. Neurosci., 2001, vol. 21, no. 16, pp. 5993–5999.PubMedGoogle Scholar
  11. 11.
    Gianello, R., Libinaki, R., Azzi, A., Gavin, P.D., Negis, Y., Zingg, J.M., Holt, P., Keah, H.H., Griffey, A., Smallridge, A., West, Z.S.M., and Ogru, E., Free Radic. Biol. Med, 2005, vol. 39, no. 7, pp. 970–976.PubMedCrossRefGoogle Scholar
  12. 12.
    Zingg, J.M., Meydani, M., and Azzi, A., Mol. Nutr. Food Res., 2010, vol. 54, pp. 679–692.PubMedCrossRefGoogle Scholar
  13. 13.
    Miller, E.R., Pastor-Barriuso, R., Dalal, D., Riemersma, A., Appel, L.J., and Guallar, E., Ann. Intern. Med., 2005, vol. 142, no. 1, pp. 37–46.PubMedGoogle Scholar
  14. 14.
    Bjelakovic, G., Nikolova, D., Gluud, L.L., Simonetti, R.G., and Gluud, C., J. Amer. Med. Assoc., 2007, vol. 297, no. 8, pp. 842–867.CrossRefGoogle Scholar
  15. 15.
    Maltseva, E.L., Palmina, N.P., and Burlakova, E.B., Membr. Cell Biol., 1998, vol. 12, no. 2, pp. 251–268.PubMedGoogle Scholar
  16. 16.
    Belov, V.V., Mal’tseva, E.L., Pal’mina, N.P., and Burlakova, E.B., Dokl. Akad. Nauk, 2004, vol. 399, no. 4, pp. 1–5.Google Scholar
  17. 17.
    Belov, V.V., Mal’tseva, E.L., and Pal’mina, N.P., Biofizika, 2007, vol. 52, no. 1, pp. 75–83.PubMedGoogle Scholar
  18. 18.
    De Bustos, F., Jimenes-Jimenes, F.J., Molina, J.A., Estenan, J., Guerrero-Sola, A., Zurdo, M., Orti-Pareja, Tallon-Barranco, A., Gomez-Escalonilla, C., Ramirez-Ramos, C., Arenas, J., Enriquez De Salamanca, R., J. Neural. Transm., 1998, vol. 105, nos. 6–7, pp. 703–708.PubMedCrossRefGoogle Scholar
  19. 19.
    Shippling, S., Kontush, A., Arlt, S., Buhmann, C., Sturenburg, H.-J., Mann, U., Muller-Thomsen, T., and Beisiegel, U., Free Radic. Biol. Med., 2000, vol. 28, pp. 351–360.CrossRefGoogle Scholar
  20. 20.
    Vatassery, G.T., Adityanjee, Quach, H.T., Smith, W.E., Kuskowski, M.A., and Melnyk, D., Mol. Basis Disease, 2004, vol. 1688, no. 5, pp. 265–273.Google Scholar
  21. 21.
    Khanna, S., Roy, S., Parinandi, N.L., Maurer, M., and Sen, C.K., J. Biol. Chem., 2003, vol. 278, no. 44, pp. 43508–43515.PubMedCrossRefGoogle Scholar
  22. 22.
    Numakawa, Y., Nuniakawa, T., Matsumoto, T., Yagasaki, Y., Kumamari, E., Kunugi, H., Taguchi, T., and Niki, E., J. Neurochem., 2006, vol. 97, no. 4, pp. 1191–1202.PubMedCrossRefGoogle Scholar
  23. 23.
    Vassault, A., Methods of Enzymatic Analysis, Bergmeyer, H.U., Ed., Weinheim: Verlag Chemie, 1983, vol. 3, pp. 118–126.Google Scholar
  24. 24.
    Khanna, S., Parinandi, N.L., Kotha, S.R., Roy, S., Rink, C., Bibus, D., and Sen, C.K., J. Neurochem., 2010, vol. 112, no. 5, pp. 1249–1260.PubMedCrossRefGoogle Scholar
  25. 25.
    Sen, C.K., Khanna, S., and Roy, S., Ann. New York Acad. Sci., 2004, vol. 1031, pp. 127–142.CrossRefGoogle Scholar
  26. 26.
    Zingg, J.M., Mol. Aspects Med., 2007, vol. 28, nos. 5–6, pp. 400–422.PubMedCrossRefGoogle Scholar
  27. 27.
    Azzi, A., Gysin, R., Kempna, P., Munteanu, A., Negis, Y., Villacorta, L., Visarius, T., and Zingg, J.M., Ann. New York Acad. Sci., 2004, vol. 1031, pp. 86–95.CrossRefGoogle Scholar
  28. 28.
    Azzi, A., Breyer, I., Feher, M., Ricciarelli, R., Stocker, A., Zimmer, S., and Zingg, J.M., J. Nutr., 2001, vol. 131, no. 2, pp. 378–381.Google Scholar
  29. 29.
    Fukunaga-Takenaka, R., Shirai, Y., Yagi, K., Adachi, N., Sakai, N., Merino, E., Merida, I., and Saito, N., Genes Cells, 2005, vol. 10, pp. 311–319.PubMedCrossRefGoogle Scholar
  30. 30.
    Kempna, P., Reiter, E., Arock, M., Azzi, A., and Zingg, J.M., J. Biol. Chem., 2004, vol. 279, pp. 50700–50709.PubMedCrossRefGoogle Scholar
  31. 31.
    Egger, T., Hammer, A., Wintersperger, A., Goti, D., Malle, E., and Saltier, W., J. Neurochem., 2001, vol. 79, no. 6, pp. 1169–1182.PubMedCrossRefGoogle Scholar
  32. 32.
    Khanna, S., Roy, S., Ryu, H., Bahaddun, P., Swaan, P.W., Ratan, R.R., and Sen, C., J. Biol. Chem., 2003, vol. 278, no. 44, pp. 43508–43515.PubMedCrossRefGoogle Scholar
  33. 33.
    Chandra, V., Jasti, J., Kaur, P., Betzel, C., Srinivasan, A., and Singh, T.P., J. Mol. Biol., 2002, vol. 320, no. 2, pp. 215–222.PubMedCrossRefGoogle Scholar
  34. 34.
    Vlasova, Yu.A. and Avrova, N.F., Neirokhimiya, 2010, vol. 27, no. 3, pp. 202–208.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • T. V. Sokolova
    • 1
  • M. P. Rychkova
    • 1
  • I. O. Zakharova
    • 1
  • I. V. Voynova
    • 1
  • N. F. Avrova
    • 1
  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations