Neurochemical Journal

, Volume 4, Issue 4, pp 304–313 | Cite as

Effects of stimulation of the hypothalamic nuclei and treatment with a proline-rich peptide on neurons of the superior vestibular nuclei during exposure to vibration

  • S. H. Sarkisyan
  • V. A. Chavushyan
  • I. B. Meliksetyan
  • V. S. Kamenecki
  • S. M. Minasyan
  • J. S. Sarkissian
  • A. A. Galoyan
Experimental Articles


Vibration impairs functioning of the nervous, cardiovascular, and motor systems. Postvibration disturbances in vestibular function are determined by adaptive changes in neuromediatory processes. We studied the possibility of the regulation of the CNS functions by neurohumoral factors, viz., hypothalamic proline-rich peptides (PRP). We found changes in the spiking activity of single neurons of the superior vestibular nucleus (SVN) in response to high-frequency stimulation (HFS) of the paraventricular (PVN) and supraoptic nuclei (SON) of the hypothalamus in the presence of vibration or systemic treatment with PRP-1. Mathematical analysis of impulse activity showed predominantly tetanic potentiation (TP) in the SVN neurons in response to HFS. Vibration resulted in a decrease in the TP level and an increase in the post-tetanic potentiation. The results of the morphological and histochemical analyses suggest a close relationship between neurons and gliocytes, with both being involved in integral unit formation. An enhanced level of survival of SVN neurons and activation of acidic phosphatase in SVN were also found in the presence of PRP during long-term exposure to vibration.


superior vestibular nucleus vibration action single neuronal activity tetanic stimulation, hypothalamic supraoptical and paraventricular nuclei proline rich peptide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sarkisian, V.H., Arch. Italian Biol., 2000, vol. 138, pp. 295–353.Google Scholar
  2. 2.
    Brodal A., Anatomy of the Vestibular Nuclei and Their Connections, in Handbook of Sensory Physiology, Komhuber, H.H., Ed., Berlin-Heidelberg-New York: Springer Verlag, 1974, vol. 6, no. 1, pp. 240–352.Google Scholar
  3. 3.
    Raitses, V.S. and Shlyakhovenko, A.A., Usp. Fiziol. Nauk, 1990, vol. 27, no. 2, pp. 56–70.Google Scholar
  4. 4.
    Minasyan, S.M., Baklavadzhyan, O.G., Saakyan, S.G., Adamyan, Ts.I., Sarkisyan, S.G., and Gevorkyan, Shch.S., Zhurn. Vyssh. Nervn. Deyatel’nosti, 1997, vol. 47, no. 4, pp. 701–707.Google Scholar
  5. 5.
    Minasyan, S.M., Integrativnye struktury mozga pri vibratsii (Integrative Brain Structures during Vibration), Yerevan: EGU, 1990.Google Scholar
  6. 6.
    Galoyan, A.A., Brain neurosecretory cytokines. Immune response and neuronal survival. Kluwer Acad. Plenum Publishers, 2004, pp. 1–188.Google Scholar
  7. 7.
    Sarkisyan, S.G., Minasyan, S.M., Meliksetyan, I.B., Chavushyan, V.A., Sarkisyan, Dzh.S., and Galoyan, A.A., in Aktual’nye voprosy funktsional’noi mezhpolusharnoi asimmetrii i neiroplastichnosti (Current Problems of Functional Interhemisphere Asymmetry and Neuronal Plasticity), Moscow, 2008, pp. 635–639.Google Scholar
  8. 8.
    Paxinos, G. and Watson, C., The Rat Brain in Stereotaxic Coordinates, Sydney: Academic Press, 2005.Google Scholar
  9. 9.
    Orlov, A.I., Prikladnaya statistika (Applied Statistics), Moscow: Izdatel’stvo Ekzamen, 2004.Google Scholar
  10. 10.
    Meliksetyan, I.B., Morfologiya (Morphology), St. Petersburg, 2007, vol. 131, issue 2, pp. 77–80.Google Scholar
  11. 11.
    Morgen, J.I. and Curran, T., Trends Neurosci., 1998, vol. 12, pp. 459–462.CrossRefGoogle Scholar
  12. 12.
    Palkovits, M., Deli, M.A., Gallatz, K., Toth, Z.E., Buzas, E., and Falus, A., Neurophormacol., 2007, vol. 53, pp. 101–112.CrossRefGoogle Scholar
  13. 13.
    Doroshenko, N.Z., Maiskii, V.A., and Kartseva, A.G., Dokl. Akad. Nauk SSSR, 1985, vol. 282, no. 1, pp. 232–236.PubMedGoogle Scholar
  14. 14.
    Gromova, E.A., in Katekholaminergicheskie neirony (Catecholaminergic Neurons), Moscow, 1979, pp. 97–105.Google Scholar
  15. 15.
    Ito, M., Two Extensive Inhibitory Systems for Brainstem Nuclei. Structure and Functions of Inhibitory Neuronal Mechanisms, Oxford; N.Y: Pergamon press, 1968, pp. 309–322.Google Scholar
  16. 16.
    Elyhozi, J., Le Guan-Buik A, Europ. J. Pharmacol., 1981, vol. 73, pp. 199–208.CrossRefGoogle Scholar
  17. 17.
    Sawchenko, P.E. and Swanson, L.W., J. Compar. Neurol., 1982, vol. 205, pp. 260–273.CrossRefGoogle Scholar
  18. 18.
    Swanson, L.W. and McKeller, S., J. Com. Neurol., 1979, vol. 188, no. 1, pp. 87–106.CrossRefGoogle Scholar
  19. 19.
    Nilaver, G., Zimmerman, E.A., Wilkins, J., Michaels, J., Hoffman, G., and Silverman, A.J., Neuroendocrinology, 1980, vol. 30, no. 3, pp. 150–158.CrossRefPubMedGoogle Scholar
  20. 20.
    Sem’yanov, A.V., Neirofiziologiya, 2002, vol. 34, no. 1, pp. 82–92.Google Scholar
  21. 21.
    Verkhratsky, A. and Toescu, E.C., J. Cell. Mol. Med., 2006, vol. 10, no. 4, pp. 826–836.CrossRefPubMedGoogle Scholar
  22. 22.
    Eroglu, C., Barres, B.A., and Stevens, B., Glia as active participant in the development and function of synapses. In Structural and Functional Organization of the Synapse, Hell, J.W., Ehlers, M.D., Eds., Springer, 2008, pp. 683–714.Google Scholar
  23. 23.
    Theodosis, D.T., Poulain, D.A., and Oliet, S.H.R., Physiol. Rev., 2008, vol. 88, pp. 983–1008.CrossRefPubMedGoogle Scholar
  24. 24.
    Bolton, M. and Eroglu, C., Current Opinion in Neurobiology, 2009, vol. 19, pp. 1–7.CrossRefGoogle Scholar
  25. 25.
    Perea, G., Navarrete, M., and Araque, A., Trends Neurosci., 2009, vol. 32, pp. 421–431.CrossRefPubMedGoogle Scholar
  26. 26.
    Bergquist, F., Ruthven, A., Ludwig, M., and Dutia, M., J. Physiol., 2006, vol. 577, pp. 857–868.CrossRefPubMedGoogle Scholar
  27. 27.
    Hambartsumyan, D.K., Vardanyan, F.G., Gevondyan, K.A., Kamalyan, R.G., and Galoyan, A.A., Neurochem. J. (Moscow), 2003, vol. 20, pp. 145–152.Google Scholar
  28. 28.
    Mozrzymas, J.W., Neuropharmacology, 2004, vol. 47, no. 7, pp. 945–960.CrossRefPubMedGoogle Scholar
  29. 29.
    Farrant, M. and Nusser, Z., Nature Rev. Neurosci., 2005, vol. 6, no. 3, pp. 215–229.CrossRefGoogle Scholar
  30. 30.
    Nusser, Z. and Mody, I., J. Neurophysiol., 2002, vol. 87, no. 5, pp. 2624–2628.PubMedGoogle Scholar
  31. 31.
    Mody, I. and Pearce, R.A., Trends Neurosci., 2004, vol. 27, no. 9, pp. 569–575.CrossRefPubMedGoogle Scholar
  32. 32.
    Semyanov, A., Walker, M.C., Kullmann, D.M., and Silver, R.A., Trends Neurosci., 2004, vol. 27, no. 5, pp. 262–269.CrossRefPubMedGoogle Scholar
  33. 33.
    Cherubini, E., Gaiarsa, J.L., and Ben-Ari, Y., Trends Neurosci., 1991, vol. 14, no. 12, pp. 515–519.CrossRefPubMedGoogle Scholar
  34. 34.
    Khazipov, R., Khalilov, I., Tyzio, R., Morozova, E., Ben-Ari, Y., and Holmes, G.L., European J. Neurosci., 2004, vol. 19, pp. 590–600.CrossRefGoogle Scholar
  35. 35.
    Galoyan, A.A., The brain immune system: chemistry and biology of the signal molecules, in Handbook of Neurochemistry and Molecular Neurobiology, 3rd Edition, Neuroimmunology, Galoyan, A. and Besedovsky, H., Eds., 2008. pp. 155–195.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • S. H. Sarkisyan
    • 1
    • 4
  • V. A. Chavushyan
    • 2
  • I. B. Meliksetyan
    • 2
  • V. S. Kamenecki
    • 2
  • S. M. Minasyan
    • 1
  • J. S. Sarkissian
    • 2
  • A. A. Galoyan
    • 3
  1. 1.Yerevan State UniversityYerevanArmenia
  2. 2.Orbeli Institute of PhysiologyNational Academy of SciencesYerevanArmenia
  3. 3.Buniatian Institute of BiochemistryNational Academy of SciencesYerevanArmenia
  4. 4.YerevanArmenia

Personalised recommendations