Neurochemical Journal

, Volume 4, Issue 1, pp 1–7 | Cite as

Protease-activated receptors and neuroplasticity: Protease-activated receptors as a possible target for cathepsin B

Review Articles

Abstract

Extracellular serine proteases are implicated in numerous processes in the brain, both under normal and pathological conditions. Many of the effects of these proteases are mediated by protease-activated receptors (PARs). PARs are a unique class of receptors widely expressed in many tissues, including the brain. Various proteases can either activate or inactivate PARs depending on the location of the proteolytic cleavage site. However, little is known about the proteases that really regulate different PARs in the nervous system in vivo. Proteases are known to be relatively nonspecific for their substrates, so proteases of different classes can cleave the same substrate. The literature and our data suggest that extracellular cathepsin B, which belongs to the cysteine protease class, can regulate the activity of PARs in nerve cells.

Key words

protease cathepsin B brain PAR neuroplasticity 

Abbreviations

PAR

protease-activated receptor

tPA

tissue plasminogen activator

LTP

long-term potentiation

NMDA

N-metil-D-aspartat

BDNF

brain-derived neurotrophic factor

KLK8

kallikrein 8

KLK6

kallikrein 6

PAR-AP

PAR activating peptide

BBB

blood brain barrier

CNS

central nervous system

MCAO

middle cerebral artery occlusion

HIV

human immunodeficiency virus

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Puente, X.S., Sanchez, L.M., Overall, C.M., and Lopez-Otin, C., Nat. Rev. Genet, 2003, vol. 4, no. 7, pp. 544–558.CrossRefPubMedGoogle Scholar
  2. 2.
    Qian, Z., Gilbert, M.E., Colicos, et al., Nature, 1993, vol. 361, no. 6411, pp. 453–457.CrossRefPubMedGoogle Scholar
  3. 3.
    Madani, R., Hulo, S., Toni, N., et al., EMBO J., 1999, vol. 18, no. 11, pp. 3007–3012.CrossRefPubMedGoogle Scholar
  4. 4.
    Frey, U., Muller, M., and Kuhl, D., J. Neurosci., 1996, vol. 16, no. 6, pp. 2057–2063.PubMedGoogle Scholar
  5. 5.
    Baranes, D., Lederfein, D., Huang, Y.Y., et al., Neuron, 1998, vol. 21, no. 4, pp. 813–825.CrossRefPubMedGoogle Scholar
  6. 6.
    Pawlak, R., Magarinos, A.M., Melchor, et al., Nat. Neurosci., 2003, vol. 6, no. 2, pp. 168–174.CrossRefPubMedGoogle Scholar
  7. 7.
    Seeds, N.W., Williams, B.L., and Bickford, P.C., Science, 1995, vol. 270, no. 5244, pp. 1992–1994.CrossRefPubMedGoogle Scholar
  8. 8.
    Wang, Y.F., Tsirka, S.E., Strickland, S., et al., Nat. Med., 1998, vol. 4, no. 2, pp. 228–231.CrossRefPubMedGoogle Scholar
  9. 9.
    Tsirka, S.E., Gualandris, A., Amaral, D.G., and Strickland, S., Nature, 1995, vol. 377, no. 6547, pp. 340–344.CrossRefPubMedGoogle Scholar
  10. 10.
    Nicole, O., Docagne, F., Ali, C., et al., Nat. Med, 2001, vol. 7, no. 1, pp. 59–64.CrossRefPubMedGoogle Scholar
  11. 11.
    Pang, P.T., Teng, H.K., Zaitsev, E., et al., Science, 2004, vol. 306, no. 5695, pp. 487–491.CrossRefPubMedGoogle Scholar
  12. 12.
    Deschepper, C.F., Bigornia, V., Berens, M.E., and Lapointe, M.C., Brain Res. Mol. Brain Res, 1991, vol. 11, nos. 3–4, pp. 355–358.CrossRefPubMedGoogle Scholar
  13. 13.
    Dihanich, M., Kaser, M., Reinhard, E., et al., Neuron, 1991, vol. 6, no. 4, pp. 575–581.CrossRefPubMedGoogle Scholar
  14. 14.
    Tomimatsu, Y., Idemoto, S., Moriguchi, S., et al., Life Sci., 2002, vol. 72, nos. 4–5, pp. 355–361.CrossRefPubMedGoogle Scholar
  15. 15.
    Maggio, N., Shavit, E., Chapman, J., and Segal, M., J. Neurosci., 2008, vol. 28, no. 3, pp. 732–736.CrossRefPubMedGoogle Scholar
  16. 16.
    Arai, T., Miklossy, J., Klegeris, A., et al., J. Neuropathol. Exp. Neurol, 2006, vol. 65, no. 1, pp. 19–25.CrossRefPubMedGoogle Scholar
  17. 17.
    Cannon, J.R., Keep, R.F., Schallert, T., et al., Brain Res., 2006, vol. 1116, no. 1, pp. 177–186.CrossRefPubMedGoogle Scholar
  18. 18.
    Komai, S., Matsuyama, T., Matsumoto, K., et al., Eur. J. Neurosci, 2000, vol. 12, no. 4, pp. 1479–1486.CrossRefPubMedGoogle Scholar
  19. 19.
    Tamura, H., Ishikawa, Y., Hino, N., et al., J. Physiol., 2006, vol. 570, no. 3, pp. 541–551.CrossRefPubMedGoogle Scholar
  20. 20.
    Momota, Y., Yoshida, S., Ito, J., et al., Eur. J. Neurosci, 1998, vol. 10, no. 2, pp. 760–764.CrossRefPubMedGoogle Scholar
  21. 21.
    Hirata, A., Yoshida, S., Inoue, N., et al., Mol. Cell. Neurosci, 2001, vol. 17, no. 3, pp. 600–610.CrossRefPubMedGoogle Scholar
  22. 22.
    Oka, T., Akisada, M., Okabe, A., et al., Neurosci. Let., 2002, vol. 321, no. 3, pp. 141–144.CrossRefGoogle Scholar
  23. 23.
    Wang, Y., Luo, W., and Reiser, G., Cell. Mol. Life Sci, 2008, vol. 65, no. 2, pp. 237–252.CrossRefPubMedGoogle Scholar
  24. 24.
    Little, S.P., Dixon, E.P., Norris, F., et al., J. Biol. Chem., 1997, vol. 272, no. 40, pp. 25135–25142.CrossRefPubMedGoogle Scholar
  25. 25.
    Magklara, A., Mellati, A.A., Wasney, G.A., et al., Biochem. Biophys. Res. Commun., 2003, vol. 307, no. 4, pp. 948–955.CrossRefPubMedGoogle Scholar
  26. 26.
    Scarisbrick, I.A., Blaber, S.I., Lucchinetti, C.F., et al., Brain, 2002, vol. 125, no. 6, pp. 1283–1296.CrossRefPubMedGoogle Scholar
  27. 27.
    Terayama, R., Bando, Y., Yamada, M., and Yoshida, S., Glia, 2005, vol. 52, no. 2, pp. 108–118.CrossRefPubMedGoogle Scholar
  28. 28.
    Ossovskaya, V.S. and Bunnett, N.W., Physiol Rev, 2004, vol. 84, no. 2, pp. 579–621.CrossRefPubMedGoogle Scholar
  29. 29.
    Vu, T.K., Hung, D.T., Wheaton, V.I., and Coughlin, S.R., Cell, 1991, vol. 64, no. 6, pp. 1057–1068.CrossRefPubMedGoogle Scholar
  30. 30.
    Bohm, S.K., Khitin, L.M., Grady, E.F., et al., J. Biol. Chem., 1996, vol. 271, no. 36, pp. 22003–22016.CrossRefPubMedGoogle Scholar
  31. 31.
    Molino, M., Blanchard, N., Belmonte, E., et al., J. Biol. Chem., 1995, vol. 270, no. 19, pp. 11168–11175.CrossRefPubMedGoogle Scholar
  32. 32.
    Cumashi, A., Ansuini, H., Celli, N., et al., Thromb. Haemost, 2001, vol. 85, no. 3, pp. 533–538.PubMedGoogle Scholar
  33. 33.
    Dulon, S., Cande, C., Bunnett, N.W., et al., Am. J. Respir. Cell. Mol. Biol, 2003, vol. 28, no. 3, pp. 339–346.CrossRefPubMedGoogle Scholar
  34. 34.
    McLaughlin, J.N., Patterson, M.M., and Malik, A.B., Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no. 13, pp. 5662–5667.CrossRefPubMedGoogle Scholar
  35. 35.
    Nakanishi-Matsui, M., Zheng, Y.W., Sulciner, D.J., et al., Nature, 2000, vol. 404, no. 6778, pp. 609–613.CrossRefPubMedGoogle Scholar
  36. 36.
    Striggow, F., Riek-Burchardt, M., Kiesel, A., et al., Eur. J. Neurosci, 2001, vol. 14, no. 4, pp. 595–608.CrossRefPubMedGoogle Scholar
  37. 37.
    Luo, W., Wang, Y., and Reiser, G., Brain Res. Rev., 2007, vol. 56, no. 2, pp. 331–345.CrossRefPubMedGoogle Scholar
  38. 38.
    Donovan, F.M., Pike, C.J., Cotman, C.W., and Cunningham, D.D., J. Neurosci., 1997, vol. 17, no. 14, pp. 5316–5326.PubMedGoogle Scholar
  39. 39.
    Suo, Z., Wu, M., Citron, B.A., et al., J. Biol. Chem., 2003, vol. 278, no. 39, pp. 37681–37689.CrossRefPubMedGoogle Scholar
  40. 40.
    Hamill, C.E., Caudle, W.M., Richardson, J.R., et al., Mol. Pharmacol., 2007, vol. 72, no. 3, pp. 653–664.CrossRefPubMedGoogle Scholar
  41. 41.
    Gingrich, M.B., Junge, C.E., Lyuboslavsky, P., and Traynelis, S.F., J. Neurosci., 2000, vol. 20, no. 12, pp. 4582–4595.PubMedGoogle Scholar
  42. 42.
    Almonte, A.G., Hamill, C.E., Chhatwal, J.P., et al., Neurobiol. Learn. Mem, 2007, vol. 88, no. 3, pp. 295–304.CrossRefPubMedGoogle Scholar
  43. 43.
    Striggow, F., Riek, M., Breder, J., et al., Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no. 5, pp. 2264–2269.CrossRefPubMedGoogle Scholar
  44. 44.
    Vaughan, P.J., Pike, C.J., Cotman, C.W., and Cunningham, D.D., J. Neurosci., 1995, vol. 15, no. 7, pp. 5389–5401.PubMedGoogle Scholar
  45. 45.
    Wang, Y., Luo, W., and Reiser, G., Eur. J. Neurosci, 2007, vol. 26, no. 11, pp. 3159–3168.CrossRefPubMedGoogle Scholar
  46. 46.
    Wang, Y., Luo, W., Stricker, R., and Reiser, G., J. Neurochem., 2006, vol. 98, no. 4, pp. 1046–1060.CrossRefPubMedGoogle Scholar
  47. 47.
    Gorbacheva, L.R., Storozhevykh, T.P., Pinelis, V.G., et al., Biokhimiya, 2006, vol. 71, no. 10, pp. 1338–1346.Google Scholar
  48. 48.
    Guo, H., Liu, D., Gelbard, H., et al., Neuron, 2004, vol. 41, no. 4, pp. 563–572.CrossRefPubMedGoogle Scholar
  49. 49.
    Gorbacheva, L.R., Storozhevykh, T.P., Pinelis, V.G., et al., Biokhimiya, 2008, vol. 73, no. 6, pp. 893–902.Google Scholar
  50. 50.
    Bushell, T., J. Physiol., 2007, vol. 581, no. 1, pp. 7–16.CrossRefPubMedGoogle Scholar
  51. 51.
    Smith-Swintosky, V.L., Cheo-Isaacs, C.T., D’Andrea, M.R., et al., J. Neurochem., 1997, vol. 69, no. 5, pp. 1890–1896.PubMedCrossRefGoogle Scholar
  52. 52.
    Jin, G., Hayashi, T., Kawagoe, J., et al., J. Cereb. Blood Flow Metab., 2005, vol. 25, no. 3, pp. 302–313.CrossRefPubMedGoogle Scholar
  53. 53.
    Noorbakhsh, F., Vergnolle, N., McArthur, J.C., et al., J. Immunol, 2005, vol. 174, no. 11, pp. 7320–7329.PubMedGoogle Scholar
  54. 54.
    Noorbakhsh, F., Tsutsui, S., Vergnolle, N., et al., J. Exp. Med., 2006, vol. 203, no. 2, pp. 425–435.CrossRefPubMedGoogle Scholar
  55. 55.
    Afkhami-Goli, A., Noorbakhsh, F., Keller, A.J., et al., J. Immunol, 2007, vol. 179, no. 8, pp. 5493–5503.PubMedGoogle Scholar
  56. 56.
    Lohman, R.J., O’Brien, T.J., and Cocks, T.M., Neurobiol. Dis, 2008, vol. 30, no. 1, pp. 84–93.CrossRefPubMedGoogle Scholar
  57. 57.
    Lohman, R.J., Jones, N.C., O’Brien, T.J., and Cocks, T.M., Neurobiol. Learn. Mem, 2009, vol. 92, no. 3, pp. 301–309.CrossRefPubMedGoogle Scholar
  58. 58.
    Olianas, M.C., Dedoni, S., and Onali, P., Neuroscience, 2007, vol. 146, no. 3, pp. 1289–1301.CrossRefPubMedGoogle Scholar
  59. 59.
    Pindon, A., Festoff, B.W., and Hantai, D., Eur. J. Biochem., 1998, vol. 255, no. 3, pp. 766–774.CrossRefPubMedGoogle Scholar
  60. 60.
    Park, G.H., Ryu, J.R., Shin, C.Y., et al., Neurosci. Res, 2006, vol. 54, no. 1, pp. 15–23.CrossRefPubMedGoogle Scholar
  61. 61.
    Domotor, E., Bartha, K., Machovich, R., and AdamVizi, V., J. Neurochem., 2002, vol. 80, no. 5, pp. 746–754.CrossRefPubMedGoogle Scholar
  62. 62.
    Toth, J., Siklodi, E., Medveczky, P., et al., Neurochem. Res, 2007, vol. 32, no. 9, pp. 1423–1433.CrossRefPubMedGoogle Scholar
  63. 63.
    Cottrell, G.S., Amadesi, S., Grady, E.F., and Bunnett, N.W., J. Biol. Chem., 2004, vol. 279, no. 14, pp. 13532–13539.CrossRefPubMedGoogle Scholar
  64. 64.
    Knecht, W., Cottrell, G.S., Amadesi, S., et al., J. Biol. Chem., 2007, vol. 282, no. 36, pp. 26089–26100.CrossRefPubMedGoogle Scholar
  65. 65.
    Grishina, Z., Ostrowska, E., Halangk, W., et al., Br. J. Pharmacol, 2005, vol. 146, no. 7, pp. 990–999.CrossRefPubMedGoogle Scholar
  66. 66.
    Wang, Y., Luo, W., Wartmann, T., et al., J. Neurochem., 2006, vol. 99, no. 3, pp. 759–769.CrossRefPubMedGoogle Scholar
  67. 67.
    Compton, S.J., Renaux, B., Wijesuriya, S.J., and Hollenberg, M.D., Br. J. Pharmacol, 2001, vol. 134, no. 4, pp. 705–718.CrossRefPubMedGoogle Scholar
  68. 68.
    Compton, S.J., Sandhu, S., Wijesuriya, S.J., and Hollenberg, M.D., Biochem. J., 2002, vol. 368, no. 2, pp. 495–505.CrossRefPubMedGoogle Scholar
  69. 69.
    Oikonomopoulou, K., Hansen, K.K., Saifeddine, M., et al., J. Biol. Chem., 2006, vol. 281, no. 43, pp. 32095–32112.CrossRefPubMedGoogle Scholar
  70. 70.
    Oikonomopoulou, K., Hansen, K.K., Saifeddine, M., et al., Biol. Chem., 2006, vol. 387, no. 6, pp. 817–824.CrossRefPubMedGoogle Scholar
  71. 71.
    Schilling, O. and Overall, C.M., Nat. Biotechnol, 2008, vol. 26, no. 6, pp. 685–694.CrossRefPubMedGoogle Scholar
  72. 72.
    Verspurten, J., Gevaert, K., Declercq, W., and Vandenabeele, P., Trends Biochem. Sci., 2009, vol. 34, no. 7, pp. 319–323.CrossRefPubMedGoogle Scholar
  73. 73.
    Onufriev, M.V., Yakovlev, A.A., Lyzhin, A.A., et al., Biokhimiya, 2009, vol. 74, no. 3, pp. 346–354.Google Scholar
  74. 74.
    Yakovlev, A.A., Gorokhovatskii, A.Yu., Onufriev, M.V., et al., Biokhimiya, 2008, vol. 73, no. 3, pp. 408–413.Google Scholar
  75. 75.
    Mort, J.S. and Recklies, A.D., Biochem. J., 1986, vol. 233, no. 1, pp. 57–63.PubMedGoogle Scholar
  76. 76.
    Pietras, R.J. and Roberts, J.A., J. Biol. Chem., 1981, vol. 256, no. 16, pp. 8536–8544.PubMedGoogle Scholar
  77. 77.
    Sloane, B.F., Moin, K., Sameni, M., et al., J. Cell Sci., 1994, vol. 107, no. 2, pp. 373–384.PubMedGoogle Scholar
  78. 78.
    Guinec, N., Dalet-Fumeron, V., and Pagano, M., FEBS Lett., 1992, vol. 308, no. 3, pp. 305–308.CrossRefPubMedGoogle Scholar
  79. 79.
    Barrett, A.J. and Kirschke, H., Methods Enzymol., 1981, vol. 80, pp. 535–561.CrossRefPubMedGoogle Scholar
  80. 80.
    Rowan, A.D., Feng, R., Konishi, Y., and Mort, J.S., Biochem. J., 1993, vol. 294, no. 3, pp. 923–927.PubMedGoogle Scholar
  81. 81.
    Pohl, J., Davinic, S., Blaha, I., et al., Anal. Biochem., 1987, vol. 165, no. 1, pp. 96–101.CrossRefPubMedGoogle Scholar
  82. 82.
    Polgar, L. and Csoma, C., J. Biol. Chem., 1987, vol. 262, no. 30, pp. 14448–14453.PubMedGoogle Scholar
  83. 83.
    Takahashi, T., Dehdarani, A.H., Yonezawa, S., and Tang, J., J. Biol. Chem., 1986, vol. 261, no. 20, pp. 9375–9381.PubMedGoogle Scholar
  84. 84.
    Willenbrock, F. and Brocklehurst, K., Biochem. J., 1985, vol. 227, no. 2, pp. 521–528.PubMedGoogle Scholar
  85. 85.
    Khouri, H.E., Plouffe, C., Hasnain, S., et al., Biochem. J., 1991, vol. 275, no. 3, pp. 751–757.PubMedGoogle Scholar
  86. 86.
    Recklies, A.D., White, C., Mitchell, J., and Poole, A.R., Cancer Res., 1985, vol. 45, no. 5, pp. 2294–2301.PubMedGoogle Scholar
  87. 87.
    Hook, V., Toneff, T., Bogyo, M., et al., Biol. Chem., 2005, vol. 386, no. 9, pp. 931–940.CrossRefPubMedGoogle Scholar
  88. 88.
    Mueller-Steiner, S., Zhou, Y., Arai, H., et al., Neuron, 2006, vol. 51, no. 6, pp. 703–714.CrossRefPubMedGoogle Scholar
  89. 89.
    Authier, F., Kouach, M., and Briand, G., FEBS Lett., 2005, vol. 579, no. 20, pp. 4309–4316.CrossRefPubMedGoogle Scholar
  90. 90.
    Turk, B., Bieth, J.G., Bjork, I., et al., Biol. Chem., 1995, vol. 376, no. 4, pp. 225–230.Google Scholar
  91. 91.
    Cavallo-Medved, D., Dosescu, J., Linebaugh, B.E., et al., Neoplasia, 2003, vol. 5, no. 6, pp. 507–519.PubMedGoogle Scholar
  92. 92.
    Almeida, P.C., Nantes, I.L., Chagas, et al., J. Biol. Chem., 2001, vol. 276, no. 2, pp. 944–951.CrossRefPubMedGoogle Scholar
  93. 93.
    Szmola, R., Kukor, Z., and Sahin-Toth, M., J. Biol. Chem., 2003, vol. 278, no. 49, pp. 48580–48589.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia
  2. 2.MoscowRussia

Personalised recommendations