Neurochemical Journal

, Volume 3, Issue 2, pp 77–86 | Cite as

Synaptic and paracrine nonsynaptic systems of the mammalian brain

Review Articles

Abstract

The basis for the definition of a system as a synaptic system is its ability to induce EPSPs via ionotropic receptors/sodium channels or IPSPs via ionotropic receptors/chloride channels. Ionotropic receptors/sodium channels are present in the glutamatergic and acetylcholinergic system. The GABA and glycine systems have ionotropic receptors/chloride channels. The major synaptic systems of the mammalian brain are GABA- and glutamatergic systems. The physiological role of paracrine or diffuse neuromodulatory nonsynaptic systems is described by the example of dopaminergic and serotonergic systems. The mesolimbic and mesocortical dopaminergic systems form emotionally positive states. Nigrostriatal dopaminergic systems control behavior by modification of glutamate- and GABAergic ionotropic receptors of spiny neurons of neostriatum by a transduction signal. Description of the anatomical pathways of interaction of dopaminergic systems suggests that mesolimbic dopaminergic system induces purposeful emotionally motivated behavior via the nucleus accumbens, substantia nigra pars reticulata, and ventral pallidum. The physiological role of the serotonergic paracrine system is the formation of emotionally negative states. The antidepressant effect of tricyclic antidepressants depends on an initially negative state of animals, develops via interaction with the dopaminergic system, and, finally, is determined by the activation of the dopaminergic system of the brain.

Key words

neuromediators neuromodulators paracrine systems emotionally motivated state learning and memory ionotropic receptors/ionic channels metabotropic receptors transduction signal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nicoll, R.A., Malenka, R.C., and Kauer, J.A., Physiol. Rev., 1990, vol. 70, no. 2, pp. 513–565.PubMedGoogle Scholar
  2. 2.
    Sigma-RBI Handbook of Receptor Classification and Signal Transduction, 5th ed., K. Watling, Sigma-RBI, 2006.Google Scholar
  3. 3.
    Bazyan, A.S., Usp. Fiziol. Nauk, 2001, vol. 32, no. 3, pp. 3–22.Google Scholar
  4. 4.
    Shepard, G., Neirobiologiya. Vols 1, 2 (Neurobiology), Moscow: Mir, 1987.Google Scholar
  5. 5.
    Harley, C.W., Biol. Psychiat., 1987, vol. 11, pp. 419–458.CrossRefGoogle Scholar
  6. 6.
    Raevskii, K.S, Sotnikova, T.D., and Gainetdinov, R.R., Usp. Fiziol. Nauk, 1996, vol. 27, no. 4, pp. 3–29.PubMedGoogle Scholar
  7. 7.
    Roth, R.H., Wolf, M.E., and Deutch, A.Y., Psychopharmacology: The Third Generation of Progress, Meltzer, H.Y., Ed., New York: Raven Press, 1987.Google Scholar
  8. 8.
    Roth, R.H., Wolf, M.E., and Deutch, A.Y., Psychopharmacology: The Fourth Generation of Progress, Bloom, F.E. and Kupfer, D.J., Eds., New York: Raven Press, 1995.Google Scholar
  9. 9.
    Bunin, M.A. and Wightman, R.M., Trends Neurosci., 1999, vol. 22, no. 9, pp. 377–382.PubMedCrossRefGoogle Scholar
  10. 10.
    Hoyer, D., Clarke, D.E., Fozard, J.R., et al., Pharmacol. Rev., 1994, vol. 46, no. 2, pp. 157–203.PubMedGoogle Scholar
  11. 11.
    Iversen, L.L., Neurotransmis., 1994, vol. 10, no. 1, pp. 1–4.Google Scholar
  12. 12.
    Mayford, M., Abel T., Kandel E.R, Cur. Opin. Neurobiol., 1995, vol. 5, no. 1, pp. 141–148.CrossRefGoogle Scholar
  13. 13.
    Deadwyler, S.A., Dunwiddie, T., and Lynch, G, Synapse, 1987, vol. 1, no. 1, pp. 90–95.PubMedCrossRefGoogle Scholar
  14. 14.
    Abraham, W.C. and Otani, S., J. Physiol., 1988, vol. 407, no. 2, p. 50.Google Scholar
  15. 15.
    Otani, S. and Abraham, W.C., Neurosci. Lett., 1989, vol. 106, no. 1, pp. 175–180.PubMedCrossRefGoogle Scholar
  16. 16.
    Otani, S., Marshall J., Tate W.P., et al, Neuroscience, 1989, vol. 28, no. 3, pp. 519–526.PubMedCrossRefGoogle Scholar
  17. 17.
    Pauwels, P.J., Tocris Reviews, 2003, no. 25.Google Scholar
  18. 18.
    Val’dman, A.V. and Poshivalov, V.P., Farmakologicheskaya regulyatsiya vnutrividovogo povedeniya (Pharmacological Regulation of Intraspecific Behavior), Moscow: Meditsina, 1984.Google Scholar
  19. 19.
    Kruglikov, R.I., Neirokhimicheskie mekhanizmy obucheniya i pamyati (Neurochemical Mechanisms of Learning and Memory), Moscow: Nauka, 1981.Google Scholar
  20. 20.
    Greengard, P. and Allen, P.B., Neuron, 1999, vol. 23, no. 3, pp. 435–447.PubMedCrossRefGoogle Scholar
  21. 21.
    Shabanov, P.D. and Lebedev, A.A., Fiziol. Zh. im. I.M. Sechenova, 1994, vol. 80, no. 11, pp. 19–25.PubMedGoogle Scholar
  22. 22.
    McGregor, I.S., Atrens, D.M., and Jackson, D.M., Psychopharmacol. Berl, 1992, vol. 106, no. 2, pp. 239–247.CrossRefGoogle Scholar
  23. 23.
    Olds, M.E., Pharmacol. Biochem. Behav., 1995, vol. 50, no. 1, pp. 41–48.PubMedCrossRefGoogle Scholar
  24. 24.
    Gratton, A. and Wise, R.A., J. Neurosci., 1994, vol. 14, no. 7, pp. 4130–4146.PubMedGoogle Scholar
  25. 25.
    Dackis, C.A. and Gold, M.S., Neurosci. Biobehav. Rev., 1985, vol. 9, pp. 469–477.PubMedCrossRefGoogle Scholar
  26. 26.
    Hurd, Y.L., Weiss, F., Koob, G.F., et al., Brain Res., 1989, vol. 498, no. 2, pp. 199–203.PubMedCrossRefGoogle Scholar
  27. 27.
    Hemby, S.R., Martin, T.J., and Co, C., et al., J. Pharm. Exp. Ther., 1995, vol. 273, no. 3, pp. 591–598.Google Scholar
  28. 28.
    Di Chiara, G., Behav. Brain Res., 2002, vol. 137, no. 1, pp. 75–114.PubMedCrossRefGoogle Scholar
  29. 29.
    Gerrits, M.A.F.M., Petromilli, P., Westenberg, H.G.M., et al., Brain Res., 2002, vol. 924, no. 1, pp. 141–150.PubMedCrossRefGoogle Scholar
  30. 30.
    Weiss, F., Markou, A., and Lorang, M.T., and Koob G.F., Brain Res., 1992, vol. 593, no. 3, pp. 314–318.PubMedCrossRefGoogle Scholar
  31. 31.
    Acquas, A. and Di Chiara, G., J. Neurochem., 1992, vol. 58, no. 5, pp. 1620–1625.PubMedCrossRefGoogle Scholar
  32. 32.
    Diana, M., Melis, M., Muntoni, A.L., and Gessa G.L., Proc. Nat. Acad. Sci. U.S.A., 1998, vol. 95, no. 17, pp. 10269–10273.CrossRefGoogle Scholar
  33. 33.
    Rossetti, Z.L., Hmaidan, Y., and Gessa, G.L., Eur. J. Pharmacol., 1992, vol. 221, pp. 227–234.PubMedCrossRefGoogle Scholar
  34. 34.
    Koob, G.F., Ann. New York Acad. Sci., 2000, vol. 909, no. 3, pp. 170–185.Google Scholar
  35. 35.
    Robertson, M.V., Leslie, C.A., and Bennett, J.P., Brain Res., 1991, vol. 538, pp. 337–339.PubMedCrossRefGoogle Scholar
  36. 36.
    Weiss, F., Ciccocioppo, R., Parsons, L.H., et al., Ann. New York Acad. Sci., 2001, vol. 937, no. 1, pp. 1–26.CrossRefGoogle Scholar
  37. 37.
    Koob, G.F., Ann. New York Acad. Sci., 1999, vol. 907, no. 10, pp. 445–460.CrossRefGoogle Scholar
  38. 38.
    Koob, G.F. and Le Moal, M., Neuropsychopharmacol, 2001, vol. 24, pp. 97–129.CrossRefGoogle Scholar
  39. 39.
    Caine, S.B. and Koob, G.F., J. Pharmacol. Exp. Ther., 1994, vol. 270, no. 1, pp. 209–218.PubMedGoogle Scholar
  40. 40.
    Caine, S.B., Negus, S.S., Mello, N.K., et al., J. Neurosci., 2002, vol. 22, no. 7, pp. 2977–2988.PubMedGoogle Scholar
  41. 41.
    Phillips, A.G., Pfaus, J.G., and Blaha, C.D., in The Mesolimbic Dopamine System: from Motivation to Action, Willner, P. and Scueel-Kruger, J., Eds., Willey, Chichester, 1991, pp. 199–224.Google Scholar
  42. 42.
    Wise, R.A., Brain Res., 1978, vol. 152, no. 2, pp. 215–247.PubMedCrossRefGoogle Scholar
  43. 43.
    Wise, R.A., Life Sci., 1978, vol. 22, no. 7, pp. 535–542.PubMedCrossRefGoogle Scholar
  44. 44.
    Gray, T. and Wise, R.A., Pharmacol. Biochem. Behav., 1980, vol. 6, pp. 931–935.CrossRefGoogle Scholar
  45. 45.
    Blackburn, J.R., Phillips, A.G., Jakubovic, A., and Fibiger, H.C., Behav. Neurosci., 1989, vol. 103, no. 1, pp. 15–23.PubMedCrossRefGoogle Scholar
  46. 46.
    Heffher, T.G., Luttinger, D., Hartman, J.A., and Seiden, L.S., Brain Res., 1981, vol. 214, no. 1, pp. 215–218.CrossRefGoogle Scholar
  47. 47.
    Hernandez, L. and Hoebel, B.G., Life Sci., 1988, vol. 42, no. 18, pp. 1705–1712.PubMedCrossRefGoogle Scholar
  48. 48.
    Joseph, M.H., Datla, K., and Young, A.M., Neurosci. Biobehav. Rev., 2003, vol. 27, no. 6, pp. 527–541.PubMedCrossRefGoogle Scholar
  49. 49.
    Martel, P. and Fantino, M., Pharmacol. Biochem. Behav., 1996, vol. 55, no. 2, pp. 297–302.PubMedCrossRefGoogle Scholar
  50. 50.
    Phillips, A.G., Coury, A., Fiorino, D., et al., Ann. New York Acad. Sci., 1992, vol. 654, pp. 199–206.CrossRefGoogle Scholar
  51. 51.
    Kiyatkin, E.A. and Gratton, A., Brain Res., 1994, vol. 652, no. 2, pp. 225–234.PubMedCrossRefGoogle Scholar
  52. 52.
    Yoshida, M., Yokoo, H., Mizoguchi, K., et al., Neurosci. Lett., 1992, vol. 139, no. 1, pp. 73–76.PubMedCrossRefGoogle Scholar
  53. 53.
    Young, A.M., Joseph, M.H., and Gray, J.A., Neuroscience, 1992, vol. 48, no. 4, pp. 871–876.PubMedCrossRefGoogle Scholar
  54. 54.
    Becker, J.B., Rudick, C.N., and Jenkins, W.J., J. Neurosci., 2001, vol. 21, no. 9, pp. 3236–3241.PubMedGoogle Scholar
  55. 55.
    Berridge, K.C., Robinson T.E., Brain Res. Rev., 1998, vol. 28, no. 3, pp. 309–369.PubMedCrossRefGoogle Scholar
  56. 56.
    Di Chiara, G., Behav. Brain Res., 2002, vol. 137, no. 1, pp. 75–114.PubMedCrossRefGoogle Scholar
  57. 57.
    Salamone, J.D., Behav. Brain Res., 1994, vol. 61, no. 2, pp. 117–133.PubMedCrossRefGoogle Scholar
  58. 58.
    Salamone, J.D., Cousins, M.S., and Snyder, B.J., Neurosci. Biobehav. Rev., 1997, vol. 21, no. 3, pp. 341–359.PubMedCrossRefGoogle Scholar
  59. 59.
    Blum, K., Braverman, E.R., Holder, J.M., et al., J. Psychoactive Drugs, 2000, vol. 32, pp. 1–112.Google Scholar
  60. 60.
    Ferrario, C.R., Gorny, G., Crombag, H.S., et al., Biol. Psychiatry, 2005, vol. 58, no. 9, pp. 751–759.PubMedCrossRefGoogle Scholar
  61. 61.
    Valdomero, A., Isoardi, N.A., Orsingher, O.A., and Cuadra, G.R., Neuropharmacol., 2005, vol. 48, no. 4, pp. 538–546.CrossRefGoogle Scholar
  62. 62.
    Gonzales, R.A., Job, M.O., and Doyon, W.M., Pharmacol. Ther., 2004, vol. 103, no. 2, pp. 121–146.PubMedCrossRefGoogle Scholar
  63. 63.
    Cardinal, R.N., Winstanley, C.A., Robbins, T.W., and Everitt, B.J., Ann. New York Acad. Sci., 2004, vol. 102(1), pp. 33–50.CrossRefGoogle Scholar
  64. 64.
    Fuchs, R.A., Evans, K.A., Parker, M.C., and See, R.E., Psychopharmacol. (Berl), 2004, vol. 176, no. 3, pp. 459–465.CrossRefGoogle Scholar
  65. 65.
    McBride, W.J., Murphy, J.M., and Ikemoto, S., Behav. Brain Res., 1999, vol. 101, no. 2, pp. 129–152.PubMedCrossRefGoogle Scholar
  66. 66.
    Ito, R., Robbins, T.W., and Everitt, B.J., Nat. Neurosci, 2004, vol. 7, no. 4, pp. 389–397.PubMedCrossRefGoogle Scholar
  67. 67.
    Deransart, C., Riban, V., Le B.-T., et al., Neuroscience, 2000, vol. 100, pp. 335–344.PubMedCrossRefGoogle Scholar
  68. 68.
    Buzsaki, G., Smith, A., Berger, S., et al., Neuroscience, 1990, vol. 36, pp. 1–14.PubMedCrossRefGoogle Scholar
  69. 69.
    Getsova, V.M., Orlova, K.V., Folomkina, A.A., and Bazyan, A.S., Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova, 2003, vol. 53, no. 5, pp. 674–680.Google Scholar
  70. 70.
    Getsova, V.M., Orlova, N.V., Folomkina, A.A., et al., The WAG/Rij Model of Absence Epilepsy: The Nijmegan — Russian Federation Papers. Nijmegan Institute for Cognition and Information: The Netherlands, 2004, pp. 293–304.Google Scholar
  71. 71.
    Bazyan, A.S., Bikbulatova, L.S., Melnik, V.I., et al., The WAG/Rij Model of Absence Epilepsy. The Nijmegan — Russian Federation papers. Nijmegan Institute for Cognition and Information. The Netherlands, 2004, pp. 319–326.Google Scholar
  72. 72.
    Midzyanovskaya, K.S., Kuznetsova, T.D., Tuomisto, L., et al., Neirokhimiya, 2004, vol. 21, no. 4, pp. 254–260.Google Scholar
  73. 73.
    Biryukova, L.M., Midzyanovskaya, K.S., and Lensu, S., Neirokhimiya, 2006, vol. 23, no. 3, pp. 234–239.Google Scholar
  74. 74.
    Van Luitelaar, E.L.J.M. and Coenen, A.M.L., Neurosci. Lett., 1986, vol. 70, pp. 393–397.CrossRefGoogle Scholar
  75. 75.
    Van Luitelaar, E.L.J.M. and Coenen, A.M.L., The WAG/Rij Model of Absence Epilepsy: Ten Years of Research. A Computation of Papers. Nijmegen University Press. Nijmegan. The Netherlands, 1997.Google Scholar
  76. 76.
    Midzianovskaya, I.S., Kuznetsova, G.D., Coenen, A.M.L., et al., Brain Res., 2001, vol. 911, pp. 62–70.CrossRefGoogle Scholar
  77. 77.
    Meeren, H.K.M., Pijn, J.P.M., van Luitelaar, E.L.J.M., et al., J. Neurosci., 2002, vol. 22, pp. 1480–1495.PubMedGoogle Scholar
  78. 78.
    Inoue, M., Duysens, J., Vossen, J.M.H., and Coenen, A.M.L., Brain. Res, 1993, vol. 612, pp. 35–40.PubMedCrossRefGoogle Scholar
  79. 79.
    Seidenbecher, T., Staak, R., and Pape, H.C., Eur. J. Neurosci., 1998, vol. 10, pp. 1103–1112.PubMedCrossRefGoogle Scholar
  80. 80.
    De Bruin, N.M.W.J., Luijtelaar, E.L.J.M., Jansen, S.J., et al., Neurosci. Res., 2000, vol. 38, pp. 165–173.PubMedCrossRefGoogle Scholar
  81. 81.
    Warter, J.-M., Verognes, M., Depaulis, A., et al., Neuropharmacol., 1988, vol. 27, pp. 269–274.CrossRefGoogle Scholar
  82. 82.
    Lester, J., Fink S., Aronin N., DiFiglia M, Brain Res., 1993, vol. 621, pp. 106–110.PubMedCrossRefGoogle Scholar
  83. 83.
    Tamminga, C.A., and Carlsson, A., Curr. Drug Targets CNS Neurol. Disord., 2002, vol. 1, pp. 141–147.PubMedCrossRefGoogle Scholar
  84. 84.
    Pothos, E.N., Behav. Brain Res., 2002, vol. 130, pp. 203–207.PubMedCrossRefGoogle Scholar
  85. 85.
    Bazyan, A.S., Getsova, V.M., and Orlova, N.V., Neuroscience, 2000, vol. 99, pp. 279–288.PubMedCrossRefGoogle Scholar
  86. 86.
    Sarkisova, K.Yu., Midzianovskaia, I.S., and Kulikov, M.A., Behav. Brain Res., 2003, vol. 144, pp. 211–226.PubMedCrossRefGoogle Scholar
  87. 87.
    Sarkisova, Yu. and Kulikov, M.A., Behav. Brain Res., 2006, vol. 166, pp. 9–18.PubMedCrossRefGoogle Scholar
  88. 88.
    Tran, A.H., Tamura, R., Uwano, T., et al., Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no. 6, pp. 2117–2122.PubMedCrossRefGoogle Scholar
  89. 89.
    Bari, A.A. and Pierce, R.C., Neuroscience, 2005, vol. 135, no. 3, pp. 959–968.PubMedCrossRefGoogle Scholar
  90. 90.
    Olsen, C.M. and Duvauchelle, C.L., Brain Res., 2006, vol. 1075, no. 1, pp. 229–235.PubMedCrossRefGoogle Scholar
  91. 91.
    Sorg, B.A., Li, K., Wu, W., and Bailie, T.M., Neuroscience, 2004, vol. 127, no. 1, pp. 187–196.PubMedCrossRefGoogle Scholar
  92. 92.
    Tran, A.H., Tamura, R., Uwano, T., et al., Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no. 6, pp. 2117–2122.PubMedCrossRefGoogle Scholar
  93. 93.
    Bari, A.A. and Pierce, R.C., Neuroscience, 2005, vol. 135, no. 3, pp. 959–968.PubMedCrossRefGoogle Scholar
  94. 94.
    Choi, K.H., Clements, R.L., and Greenshaw, A.J., Behav. Brain Res., 2005, vol. 158, no. 1, pp. 79–88.PubMedCrossRefGoogle Scholar
  95. 95.
    Xi, Z.X., Gilbert, J.G., Pak, A.C., et al., Eur. J. Neurosci, 2005, vol. 21, no. 12, pp. 3427–3438.PubMedCrossRefGoogle Scholar
  96. 96.
    Ichimaru, Y., Egawa, T., and Sawa, A., Jpn. J. Pharmacol, 1995, vol. 68, no. 1, pp. 65–70.PubMedCrossRefGoogle Scholar
  97. 97.
    Kennett, G.A., Pittaway, K., and Blackburn, T.P., Psychopharmacol. Berl, 1994, vol. 114, no. 1, pp. 90–96.CrossRefGoogle Scholar
  98. 98.
    Kennett, G.A., Bailey, F., Piper, D.C., and Blackburn, T.P., Psychopharmacol. Berl, 1995, vol. 118, no. 2, pp. 178–182.CrossRefGoogle Scholar
  99. 99.
    Molewijk, H.E., Van Der Poel, A.M., and Olivier, B., Psychopharmacol. Berl, 1995, vol. 121, no. 1, pp. 81–90.CrossRefGoogle Scholar
  100. 100.
    Shepherd, J.K., Grewal, S.S., Fletcher, A., et al., Psychopharmacol. Berl, 1994, vol. 116, no. 1, pp. 56–64.CrossRefGoogle Scholar
  101. 101.
    Ferraro, L., Fuxe K., Agnati, L., et al. Synapse, 2005, vol. 55, no. 4, pp. 230–341.PubMedCrossRefGoogle Scholar
  102. 102.
    Keck, M.E., Sartori, S.B., Welt, T., et al., J. Neurochem., 2005, vol. 92, no. 5, pp. 1170–1179.PubMedCrossRefGoogle Scholar
  103. 103.
    Quintin, P. and Thomas, P., Encephale, 2004, vol. 30, no. 6, pp. 583–589.PubMedCrossRefGoogle Scholar
  104. 104.
    Winstanley, C.A., Dalley, J.W., Theobald, D.E., and Robbins, T.W., Psychopharmacol. Berl., 2003, vol. 170, no. 3, pp. 320–331.CrossRefGoogle Scholar
  105. 105.
    Winstanley, C.A., Theobald, D.E., Dalley, J.W., and Robbins, T.W., Neuropsychopharmacol, 2005, vol. 30, no. 4, pp. 669–682.Google Scholar
  106. 106.
    Brunner, H.G., Nelen, M., Drakefield, X.O., et al., Science, 1993, vol. 262, pp. 578–580.PubMedCrossRefGoogle Scholar
  107. 107.
    Cases, O., Self, I., Grimsby, J., and Gaspar, P., Science, 1995, vol. 268, pp. 1763–1766.PubMedCrossRefGoogle Scholar
  108. 108.
    De Maeyer, E., Self, I., Cases, O., and Gaspar, P., in: Violence: From Biology to Society, Grisolia, J.S., Ed.,. Elsevier Science: Berlin, 1997, pp. 71–78.Google Scholar
  109. 109.
    Felton, T.M., Kang T.B., Hjorth S., Auerbach S.B, Naunyn-Schmiedeberg’s Arch. Pharmacol., 2003, vol. 367, no. 3, pp. 297–305.CrossRefGoogle Scholar
  110. 110.
    Gur, E. and Lifschytz, T., Lerer B., Newman M.E, Eur. J. Pharmacol., 2002, vol. 457, no. 1, pp. 37–43.PubMedCrossRefGoogle Scholar
  111. 111.
    Rosel, P., Arranz, B., Urretavizcaya, M., et al., Psychiatry Res., 2002, vol. 111, no. 2, pp. 105–115.PubMedCrossRefGoogle Scholar
  112. 112.
    Yoshitake, T., Fujino, K., Kehr, J., et al., Anal. Biochem., 2003, vol. 312, no. 2, pp. 125–133.PubMedCrossRefGoogle Scholar
  113. 113.
    Yoshitake, T., Reenila, L., Ogren, S.O., et al., Neurosci. Lett., 2003, vol. 339, no. 3, pp. 239–242.PubMedCrossRefGoogle Scholar
  114. 114.
    Rickels, K. and Rynn, M., J. Clin. Psychiatry, 2002, vol. 63,suppl. 14, pp. 9–16.PubMedGoogle Scholar
  115. 115.
    Sanchez, C., Eur. J. Pharmacol., 2003, vol. 463, nos. 1–3, pp. 133–143.PubMedCrossRefGoogle Scholar
  116. 116.
    Tottori, K., Miwa, T., Uwahodo, Y., et al., Neuropharmacol., 2001, vol. 41, no. 8, pp. 976–988.CrossRefGoogle Scholar
  117. 117.
    Folomkina, A.A., Orlova, K.V., and Bazyan, A.S., Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova, 2004, vol. 54, no. 5, pp. 685–690.Google Scholar
  118. 118.
    Orlova, N.V., Folomkina, A.A., Koshtoyants, O.Kh., and Bazyan, A.S., Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2005, vol. 55, no. 1, pp. 65–70.Google Scholar
  119. 119.
    Dekeyne, A., Gobert, A., Auclair, A., et al., Psychopharmacol. Berl., 2002, vol. 162, no. 2, pp. 156–167.CrossRefGoogle Scholar
  120. 120.
    Evenden, J.L., Psychopharmacol. Berl., 1998, vol. 138, no. 3, pp. 283–294.CrossRefGoogle Scholar
  121. 121.
    Evenden, J.L., Psychopharmacol Berl., 1998, vol. 138, no. 3, pp. 295–304.CrossRefGoogle Scholar
  122. 122.
    Evenden, J., Psychopharmacol. Berl., 1999, vol. 143, no. 2, pp. 111–122.CrossRefGoogle Scholar
  123. 123.
    Bobula, B., Tokarski, K., and Hess, G., Pol. J. Pharmacol., 2001, vol. 53, no. 6, pp. 635–639.PubMedGoogle Scholar
  124. 124.
    De La Garza, R., Jentsch, J.D., Verrico, C.D., and Roth, R.H., Brain Res., 2002, vol. 958, no. 1, pp. 20–27.CrossRefGoogle Scholar
  125. 125.
    Wood, M.D., Thomas, D.R., and Watson, J.M., Expert. Opin. Investig. Drugs, 2002, vol. 11, no. 4, pp. 457–467.PubMedCrossRefGoogle Scholar
  126. 126.
    Matrisciano, F., Storto, M., Ngomba, R.T., et al., Neuropharmacol., 2002, vol. 42, no. 8, pp. 1008–1015.CrossRefGoogle Scholar
  127. 127.
    Varona, A., Gil, J., Saracibar, G., et al., Arzneimittelforschung, 2003, vol. 53, no. 1, pp. 21–25.PubMedGoogle Scholar
  128. 128.
    Chardenot, P., Roubert, C., Galiegue, S., et al., Mol. Pharmacol., 2002, vol. 62, no. 6, pp. 1314–1320.PubMedCrossRefGoogle Scholar
  129. 129.
    Nicholson, G.M., Blanche, T., Mansfield, K., and Tran, Y., Eur. J. Pharmacol., 2002, vol. 452, no. 1, pp. 35–48.PubMedCrossRefGoogle Scholar
  130. 130.
    Yang, Y.C. and Kuo, C.C., Mol. Pharmacol., 2002, vol. 62, no. 5, pp. 1228–1237.PubMedCrossRefGoogle Scholar
  131. 131.
    Mochizuki, D., Hokonohara, T., Kawasaki, K., and Miki, N., J. Psychopharmacol, 2002, vol. 16, no. 3, pp. 253–260.PubMedCrossRefGoogle Scholar
  132. 132.
    Baamonde, A., Dauge, V., Ruiz-Gayo, M., et al., Eur. J. Pharmacol., 1992, vol. 216, no. 2, pp. 157–166.PubMedCrossRefGoogle Scholar
  133. 133.
    D’Aquila, P.S., Peana, A.T., Panin, F., et al., Eur. J. Pharmacol., 2003, vol. 458, no. 1, pp. 129–134.PubMedCrossRefGoogle Scholar
  134. 134.
    De Montis M.G., Gambarana C., and Meloni D. Eur. J. Pharmacol., 1993, vol. 249, no. 2, pp. 179–183.PubMedCrossRefGoogle Scholar
  135. 135.
    Gambarana, C., Ghiglieri, O., Tagliamonte, A., et al., Pharmacol. Biochem. Behav., 1995, vol. 50, no. 2, pp. 147–151.PubMedCrossRefGoogle Scholar
  136. 136.
    Muscat, R., Sampson, D., and Willner, P. Biol. Psychiatry, 1990, vol. 28, pp. 223–230.PubMedCrossRefGoogle Scholar
  137. 137.
    Ossowsk, G., Nowak G., Klenk-Majewskal B., et al., Pol. J. Pharmacol., 2002, vol. 54, no. 2, pp. 89–93.Google Scholar
  138. 138.
    Rogoz, Z. and Skuza, G., Pol. J. Pharmacol., 2001, vol. 53, no. 6, pp. 571–576.PubMedGoogle Scholar
  139. 139.
    Takamori, K., Yoshida, S., and Okuyama, S. Life Sci., 2001, vol. 69, no. 16, pp. 1919–1926.PubMedCrossRefGoogle Scholar
  140. 140.
    Folomkina, A.A., Orlova, N.V., and Bazyan, A.S., Doclady Akad. Nauk, 2007, vol. 413, no. 5, pp. 703–706.Google Scholar

Copyright information

© MAIK Nauka 2009

Authors and Affiliations

  1. 1.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia
  2. 2.MoscowRussia

Personalised recommendations