Neurochemical Journal

, Volume 2, Issue 4, pp 293–296 | Cite as

Expression of glial fibrillary acidic protein in the rat endocard, cardiac interstitial Cajal-like cells, and perivascular structures of the spleen

Experimental Articles

Abstract

Previous studies showed the presence of glial fibrillary acidic protein (GFAP) in cells located at different blood—tissue interfaces (astrocytes, hepatic stellate cells, kidney glomeruli mesangial cells, alveolar fibroblasts), the blood-urine interface (podocytes), and air-body interface (skin keratinocytes and fibroblasts). Similar features of these cells hinted at the comparability of tasks at different metabolically active regions. In the present study performed with adult rat heart and spleen sections, anti-GFAP antibodies were immunoreacted with interstitial Cajal-like cells in close proximity to capillaries, between the striated muscles of the myocardium, and along the lumen of the ventricles. In spleen sections, anti-GFAP antibodies labeled cells associated with capillaries, follicular arteriole, central artery, and marginal sinuses separating two functionally different regions of the spleen: the white and red pulp. This study presents yet another example of the immunoreactivity of GFAP at the border of the blood-tissue interface that, again, supports our hypothesis concerning the importance of the GFAP cytoskeleton in intracellular functions associated with the exchange between metabolically different environments.

Key words

astrocytes blood-tissue interface capillary cytoskeleton differentiation fibroblasts hepatic stellate cells keratinocytes mesangial cells myofibroblasts podocytes smooth muscle alpha-actin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andries, L.J. and Brutsaert, D.L., Cell Tissue Res., 1994, vol. 277, pp. 391–400.PubMedCrossRefGoogle Scholar
  2. 2.
    Buniatian, G., Traub, P., Albinus, M., et al., Biol. Cell., 1998, vol. 90, pp. 53–61.PubMedCrossRefGoogle Scholar
  3. 3.
    Danielyan, L., Tolstonog, G., Traub, P., J. Invest. Dermatol., 2007, vol. 127, pp. 555–563.PubMedCrossRefGoogle Scholar
  4. 4.
    Harhun, M.I., Pucovsky, V., Povstyan, O.V., et al., J. Cell. Mol. Med., 2005, vol. 9, pp. 232–243.PubMedCrossRefGoogle Scholar
  5. 5.
    Hinescu, M.E., Gherghiceanu, M., Mandache, E., et al., J. Cell. Mol. Med., 2006, vol. 10, pp. 243–257.PubMedCrossRefGoogle Scholar
  6. 6.
    Riccalton-Banks, L., Bhari, R., Fry J., and Shakesheff, K.M., Mol. Cell. Biochem., 2003, vol. 248, pp. 97–102.PubMedCrossRefGoogle Scholar
  7. 7.
    Pfaff, I.L., Wagner, H.J., and Vallon, V., J. Am. Soc. Nephrol., 1999, vol. 10, pp. 1861–1873.PubMedGoogle Scholar
  8. 8.
    Schmidt, E.E., MacDonald, I.C., and Groom, A.C., J. Morphol., 1983, vol. 178, pp. 111–123.PubMedCrossRefGoogle Scholar
  9. 9.
    Balogh, P., Horvath, G., and Szakal, A.K., J. Histochem. Cytochem., 2004, vol. 52, pp. 1287–1298.PubMedCrossRefGoogle Scholar
  10. 10.
    Cajal, S.R., C.R. Soc. Biol. (Paris), 1983, vol. 45, pp. 217–223.Google Scholar
  11. 11.
    Thuneberg, L., Microsc. Res. Tech., 1999, vol. 47, pp. 223–238.PubMedCrossRefGoogle Scholar
  12. 12.
    Popescu, L.M., Hinescu, M.E., Ionescu, N., et al., J. Cell. Mol. Med., 2005, vol. 9, pp. 169–190.PubMedCrossRefGoogle Scholar
  13. 13.
    Lang, R.J. and Klemm, M.F., J. Cell. Mol. Med., 2005, vol. 9, pp. 543–556.PubMedCrossRefGoogle Scholar
  14. 14.
    Eng, L.F., Vanderhaeghen, J.J, Bignami, A., and Gerstl, B., Brain Res., 1971, vol. 28, pp. 351–354.PubMedCrossRefGoogle Scholar
  15. 15.
    Braak, E., Drenckhahn, D., Unsicker, K., et al., Cell. Tissue. Res., 1978, vol. 191, pp. 493–499.PubMedCrossRefGoogle Scholar
  16. 16.
    Cammer, W., Sacchi, R., and Sapirstein, V. J. Histochem. Cytochem., 1985, vol. 33, pp. 45–54.PubMedGoogle Scholar
  17. 17.
    Kamada, H., Kawai, Y., Sato, S., et al., To Shinkei, 1984, vol. 36, pp. 229–235.Google Scholar
  18. 18.
    Jessen, K.R. and Mirsky, R., Nature, 1980, vol. 286, pp. 736–737.PubMedCrossRefGoogle Scholar
  19. 19.
    Kepes, J.J. and Perentes, E., Anat. Rec., 1988, vol. 220, pp. 296–299.PubMedCrossRefGoogle Scholar
  20. 20.
    Boyer, S., Maunoury, R., Gomes, D., et al., J. Neurosci. Res., 1990, vol. 27, pp. 55–64.PubMedCrossRefGoogle Scholar
  21. 21.
    Miettinen, M., Virtanen, I., and Talerman, A., Am. J. Pathol., 1985, vol. 120, pp. 402–410.PubMedGoogle Scholar
  22. 22.
    Maunoury, R., Portier, M.M., Leonard, N., and McCormick, D., J. Neuroimmunol., 1991, vol. 35, pp. 119–125.PubMedCrossRefGoogle Scholar
  23. 23.
    Holash, J.A., Harik, S.I., Perry, G., and Stewart, P.A., Proc. Natl. Acad. Sci., USA, 1993, vol. 90, pp. 11069–11073.PubMedCrossRefGoogle Scholar
  24. 24.
    Gard, A.L., White, F.P., and Dutton, G.R., J. Neuroimmunol., 1985, vol. 8, pp. 359–375.PubMedCrossRefGoogle Scholar
  25. 25.
    Buniatian, G., Gebhardt, R., Schrenk, D., and Hamprecht, B., Eur. J. Cell Biol., 1996, vol. 70, pp. 23–32.PubMedGoogle Scholar
  26. 26.
    Apte, M.V., Haber, P.S., Applegate, T.L., et al., Gut, 1998, vol. 43, pp. 123–128.CrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • L. G. Danielyan
    • 1
  • R. Gebhardt
    • 2
  • G. H. Buniatian
    • 1
    • 3
  1. 1.Department of Clinical PharmacologyUniversity HospitalTuebingenGermany
  2. 2.Institute for BiochemistryMedical Faculty of the UniversityLeipzigGermany
  3. 3.TübingenGermany

Personalised recommendations