Neurochemical Journal

, Volume 1, Issue 3, pp 253–259 | Cite as

Study of auto- and heteroreceptor components of the presynaptic dopamine reuptake modulation in the mechanism of the in vitro action of the novel antiparkinsonian drug hemantane

  • G. I. Kovalev
  • D. A. Abaimov
  • M. V. Voronin
  • J. Yu. Firstova
  • O. V. Dolotov
Experimental Articles


The effect of Hemantane, a new 2-aminoadamantane derivative (N-adamant-2-ylhexamethylenimine hydrochloride) with antiparkinsonian activity on [3H]-dopamine ([3H]-DA) uptake and binding by D1, D2, and D3 dopamine and NMDA glutamate receptors was studied in comparison with the clinically used drug Amantadine. The method of radioligand binding to rat striatal membrane preparations was used. Both drugs, when used within a concentration range of 10−11 to 10−3 M did not affect the[G-3H]-SCH23390 and [G-3H]-Spiperone binding by D1 and D2 receptors. However, at micromolar concentrations (>10−5 M), Hemantane and Amantadine inhibited the binding of the D3 receptor ligand 7-OH-[G-3H]-DPAT with IC50 values of 39 and 360 μM, respectively; i.e., Hemantane is almost one order of magnitude more efficient. Both preparations exhibited a similar effect on NMDA receptors: the semiinhibition constants IC50 were 5.5 μM for Hemantane and 4 μM for Amantadine. Hemantane and Amantadine were shown to reproducibly inhibit the reuptake of [3H]-dopamine at concentrations of 100–500 μM. The study of inhibition kinetics demonstrated the noncompetitive character of the action: Hemantane decreased the B max value from 9.0 (control) to 5.1 pmol of [3H]-DA per min/mg of protein (p < 0.05), whereas K m value remained constant (0.5 μM), which is characteristic of the noncompetitive type of inhibition. The (±)CPP and MK-801 antagonists of NMDA receptors inhibited the reuptake of [3H]-DA with IC50 of 6 and 38 μM, respectively; NMDA (1, 10, and 100 μM) had no effect; and quisqualate, an agonist of nonNMDA receptors, moderately (−37%, p < 0.05) inhibited dopamine transport at 100 μM. These data seem to indicate that the mechanism of increase of dopaminergic transfer under the action of adamantane derivatives could involve noncompetitive inhibition of dopamine transport.

Key words

dopamine synaptosomes reuptake NMDA receptors nonNMDA receptors Parkinson’s disease antiparkinsonian drug adamantane derivatives 





Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carlsson, A. and Waldeck, D., Acta Physiol. Scand., 1958, vol. 44, no. 3/4, pp. 293–298.PubMedCrossRefGoogle Scholar
  2. 2.
    Hornykiewicz, O., The Neurobiology of Dopamine, London: Academic, 1979, pp. 633–654.Google Scholar
  3. 3.
    Danysz, W., Parsons, C., et al., Neurosci. Biobehav., 1997, vol. 21, no. 4, pp. 455–468.CrossRefGoogle Scholar
  4. 4.
    Morozov, I.S., Petrov V.I., and Sergeeva, S.A., Farmakologiya adamantanov (Pharmacology of Adamantanes), Volgograd, 2001.Google Scholar
  5. 5.
    Ebadi, M., Srinivasan, S., and Baxi, M., Prog. Neurobiol., 1996, vol. 48, no. 1, pp. 1–19.PubMedCrossRefGoogle Scholar
  6. 6.
    Nerobkova, L.N., Val’dman, E.A., Voronina, T.A., et al., Exper. Klinich. Farmacol., 2000, vol. 63, no. 3, pp. 3–6.Google Scholar
  7. 7.
    Andyarzhanova, E.A., Afanas’ev, I.I., Kudrin, V.S., et al., Abstracts of Papers, Actual’nye problemy exper. i klinich. farmacol. (Actual Problems of Experimental and Clinical Pharmacol.), St. Petersburg: Polytechnika, 1999, p 37.Google Scholar
  8. 8.
    Sobolevsky, A. and Yelshansky, M., J. Physiology, 2000, vol. 526, no. 3, pp. 493–506.CrossRefGoogle Scholar
  9. 9.
    Glowinski, J. and Iversen, L., J. Neurochem., 1966, vol. 13, no. 8, pp. 655–669.PubMedCrossRefGoogle Scholar
  10. 10.
    Sun, W., Ginovart, N., Seeman, P., et al., Mol. Pharmacol., 2003, vol. 63, no. 2, pp. 456–462.PubMedCrossRefGoogle Scholar
  11. 11.
    Rodriguez, M., Obeso, J., and Olanow, C., Beyond the Decade of the Brain. Neuroprotection in Parkinson’s Disease, Kent: Wells, Medical Limited, 1998, vol. 3, pp. 345–365.Google Scholar
  12. 12.
    Nowak, G., Trullas, R., Layer, R., et al., J Pharmacol. Exp. Ther., 1993, vol. 265, pp. 1380–1386.PubMedGoogle Scholar
  13. 13.
    Ruiu, U., Pignatelli, V., et al., Radiol. Med. (Torino), 1988, vol. 76, no. 6, pp. 647–649.Google Scholar
  14. 14.
    Cornish-Bowden, A., Principles of Enzyme Kinetics, London: Butterworth, 1976.Google Scholar
  15. 15.
    Lipton, S., Neuro. Rx, 2004, vol. 1, no. 1, pp. 101–110.PubMedCrossRefGoogle Scholar
  16. 16.
    Aretha, C.W., Sinha, A., et al., J. Pharmacol. Exp. Ther., 1995, vol. 274, no. 2, pp. 609–613.PubMedGoogle Scholar
  17. 17.
    Gobert, A., Rivet, J., et al., J. Pharmacol. Exp. Ther., 1995, vol. 275, no. 2, pp. 899–913.PubMedGoogle Scholar
  18. 18.
    Koeltzow, T., Xu, M., et al., J. Neurosci., 1998, vol. 18, no. 6, pp. 2231–2238.PubMedGoogle Scholar
  19. 19.
    Herblin, W.F., Biochem. Pharmacol., 1972, vol. 21, no. 14, pp. 1993–1995.PubMedCrossRefGoogle Scholar
  20. 20.
    Morozov, I.S., Klimova, N.V., and Sergeeva, S.A., Vestnik RAMN, 1999, no. 3, pp. 28–32.Google Scholar
  21. 21.
    Kovalev, G.I., Rodionov, A.P., Petrenko, E.S., and Zolotarev, Yu.A., Exp. Clin. Farmacol., 2003, no. 3, pp. 6–8.Google Scholar
  22. 22.
    Page, G., Peeters, M., Najimiy, M., et al., J. Neurochem., 2001, vol. 76, pp. 1282–1290.PubMedCrossRefGoogle Scholar
  23. 23.
    Levant, B., Pharmacol. Rev., 1997, vol. 49, no. 3, pp. 231–252.PubMedGoogle Scholar
  24. 24.
    Joyce, J., Woolsey, C., et al., BMC Biol., 2004, vol. 2, pp. 2–22.CrossRefGoogle Scholar
  25. 25.
    Bardoni, R., Torsney, C., et al., J. Neurosci., 2004, vol. 24, no. 11, pp. 2774–2781.PubMedCrossRefGoogle Scholar
  26. 26.
    Hornykiewicz, O., Mount Sinai J. Med., 1988, vol. 55, pp. 11–20.Google Scholar
  27. 27.
    Lowry, O. et al., J. Biol. Chem., 1951, vol. 193, pp. 265–275.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • G. I. Kovalev
    • 1
  • D. A. Abaimov
    • 1
  • M. V. Voronin
    • 1
  • J. Yu. Firstova
    • 1
  • O. V. Dolotov
    • 1
  1. 1.Zakusov Institute of PharmacologyRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations