Polymer Science, Series C

, Volume 60, Supplement 1, pp 122–134 | Cite as

Diffusion of Nanoparticles in Polymer Systems

  • I. V. Volgin
  • S. V. LarinEmail author
  • S. V. Lyulin


The state-of-the-art in research of the mobility of nanoparticles in polymer melts is presented. It is important to determine the mechanisms of diffusion processes in these systems and factors affecting the diffusion of nanoparticles of different sizes when developing methods for controlling the distribution of nanoparticles in polymer nanocomposites that play an increasingly important role in various industries. The modern theoretical concepts of the diffusion of small particles in solutions and polymer melts, as well as results of computer simulation and experimental studies, are discussed. It is shown that the key factor determining the nature of the motion of nanoparticles is the ratio of the particle size to the characteristic dimensions of the polymer, which explains the strong relationship between the mobility of nanoparticles and the local structure of polymer molecules.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. I. Bessonov, M. M. Koton, V. V. Kydryavtsev, and L. A. Laius, Polyimides: Thermally Stable Polymers (Plenum, New York, 1987).CrossRefGoogle Scholar
  2. 2.
    Polyimides: Fundamentals and Applications, Ed. by M. Ghosh (CRC Press, Boca Raton, 1996).Google Scholar
  3. 3.
    T. Takekoshi, in Advances in Polymer Science, Ed. by C. G. Overberger (Springer, Berlin, 1990), Vol. 94, p.1.CrossRefGoogle Scholar
  4. 4.
    Composite Materials. Processing, Applications, Characterisations, Ed. by K. K. Kar (Springer, Berlin; Heidelberg, 2017).Google Scholar
  5. 5.
    M. Yoonessi, Y. Shi, D. A. Scheiman, M. Lebron-Colon, D. M. Tigelaar, R. A. Weiss, and M. A. Meador, ACS Nano 6 (9), 7644.Google Scholar
  6. 6.
    H. Tang, G. J. Ehlert, Y. Lin, and H. A. Sodano, Nano Lett. 12 (1), 84 (2012).CrossRefGoogle Scholar
  7. 7.
    V. E. Yudin, V. M. Svetlichnyi, G. N. Gubanova, A. L. Didenko, T. E. Sukhanova, V. V. Kudryavtsev, S. Ratner, and G. Marom, J. Appl. Polym. Sci. 83 (13), 2873 (2002).CrossRefGoogle Scholar
  8. 8.
    Thermoplastic Materials: Properties, Manufacturing Methods, and Applications, Ed. by C. C. Ibeh (CRC Press, Boca Raton, 2011).Google Scholar
  9. 9.
    M. L. Katsevman, Chem. J. 1–2, 66 (2013).Google Scholar
  10. 10.
    Functionalized Nanomaterials, Ed. by M. A. Farrukh (InTech, Rijeka, 2016).Google Scholar
  11. 11.
    G. Mittal, V. Dhand, K. Y. Rhee, S.-J. Park, and W. R. Lee, J. Ind. Eng. Chem. 21, 11 (2015).CrossRefGoogle Scholar
  12. 12.
    L. Peponi, D. Puglia, L. Torre, L. Valentini, J. M. Kenny, Mater. Sci. Eng., R 85, 1 (2014).CrossRefGoogle Scholar
  13. 13.
    V. Georgakilas, J. A. Perman, J. Tucek, and R. Zboril, Chem. Rev. 115 (11), 4744 (2015).CrossRefGoogle Scholar
  14. 14.
    M. Bhattacharya, Materials 9 (4), 262 (2016).CrossRefGoogle Scholar
  15. 15.
    J. Gu, C. Xie, H. Li, J. Dang, W. Geng, and Q. Zhang, Polym. Compos. 35 (6), 1087 (2014).Google Scholar
  16. 16.
    A. S. Rahate, K. R. Nemade, and S. A. Waghuley, Rev. Chem. Eng. 29 (6), 471 (2013).CrossRefGoogle Scholar
  17. 17.
    M. Yoonessi, J. R. Gaier, M. Sahimi, T. L. Daulton, R. B. Kaner, and M. A. Meador, ACS Appl. Mater. Interfaces 9 (49), 43230 (2017).CrossRefGoogle Scholar
  18. 18.
    A. M. Díez-Pascual, M. Naffakh, C. Marco, G. Ellis, and M. A. Gómez-Fatou, Prog. Mater. Sci. 57 (7), 1106 (2012).CrossRefGoogle Scholar
  19. 19.
    I. Aliga, P. Pötschke, D. Lellinger, T. Skipa, S. Pegel, G. R. Kasaliwal, and T. Villmow, Polymer 53 (1), 4 (2012).CrossRefGoogle Scholar
  20. 20.
    A. Greco, A. Timo, and A. Maffezzoli, Materials 5 (10), 1972 (2012).CrossRefGoogle Scholar
  21. 21.
    Structural Nanocomposites. Engineering Materials, Ed. by J. Njuguna (Springer, Berlin, 2013).Google Scholar
  22. 22.
    Recent Advances in Polymer Nanocomposites: Synthesis and Characterisation, Ed. by S. Thomas, G. Zaikov, and V. Meera (CRC Press; Boca Raton, 2010).Google Scholar
  23. 23.
    G. Xu, Y. Zhuang, R. Xia, J. Cheng, and Y. Zhang, Mater. Lett. 89, 272 (2012).CrossRefGoogle Scholar
  24. 24.
    H. G. Chae, M. L. Minus, and S. Kumar, Polymer 47 (10), 3494 (2006).CrossRefGoogle Scholar
  25. 25.
    S. Chatterjee, F. A. Nüesch, and B. T. T. Chu, Nanotecnology 22 (27), 275714 (2011).CrossRefGoogle Scholar
  26. 26.
    J.-S. Yang, C.-L. Yang, M.-S. Wang, B.-D. Chen, and X.-G. Ma, Phys. Chem. Chem. Phys. 13 (34), 15476 (2011).CrossRefGoogle Scholar
  27. 27.
    S. V. Larin, S. G. Falkovich, V. M. Nazarychev, A. A. Gurtovenko, A. V. Lyulin, and S. V. Lyulin, RSC Adv. 4 (2), 830 (2014).CrossRefGoogle Scholar
  28. 28.
    S. G. Falkovich, S. V. Larin, A. V. Lyulin, V. E. Yudin, J. M. Kenny, and S. V. Lyulin, RSC Adv. 4 (89), 48606 (2014).CrossRefGoogle Scholar
  29. 29.
    A. Asadinezhad and P. Kelich, Appl. Surf. Sci. 392, 981 (2017).CrossRefGoogle Scholar
  30. 30.
    V. M. Nazarychev, S. V. Larin, A. V. Lyulin, T. Dingemans, J. M. Kenny, and S. V. Lyuilin, Polymers 9 (10), 548 (2017).CrossRefGoogle Scholar
  31. 31.
    S. G. Falkovich, V. M. Nazarychev, S. V. Larin, J. M. Kenny, and S. V. Lyulin, J. Phys. Chem. C 120 (12), 6771 (2016).CrossRefGoogle Scholar
  32. 32.
    M. Moniruzzaman and K. I. Winey, Macromolecules 39 (16), 5194 (2006).CrossRefGoogle Scholar
  33. 33.
    H. E. Miltner, N. Grossiord, K. Lu, J. Loos, C. E. Koning, and B. Van Mele, Macromolecules 41 (15), 5753 (2008).CrossRefGoogle Scholar
  34. 34.
    A. V. Penkova, M. E. Dmitrenko, M. P. Sokolova, B. Chen, T. V. Plisko, D. A. Markelov, and S. S. Ermakov, J. Mater. Sci. 51 (16), 7652 (2016).CrossRefGoogle Scholar
  35. 35.
    A. C. Nechifor, S. Sava, S. I. Voicu, and G. Nechifor, Int. J. Renewable Energy Environ. Eng. 5 (5), 645 (2011).Google Scholar
  36. 36.
    M. Zhang, X. Wang, Y. Bai, Z. Li, and B. Cheng, Sci. Rep. 7, Article No. 4443 (2017).Google Scholar
  37. 37.
    D. Xi, W. Huang, Z. Li, J. Lu, X. Chen, and Z. Zhou, Mater. Lett. 81, 189 (2012).CrossRefGoogle Scholar
  38. 38.
    N. V. Kamanina, S. V. Serov, N. A. Shurpo, S. V. Likhomanova, D. N. Timonin, P. V. Kuzhakov, N. N. Rozhkova, I. V. Kityk, K. J. Plucinski, and D. P. Uskokovic, J. Mater. Sci.: Mater. Electron. 23 (8), 1538 (2012).Google Scholar
  39. 39.
    M. E. Cagiao, A. O. Pozdnyakov, M. Krumova, V. V. Kudryavtsev, and F. J. Balta Calleja, Compos. Sci. Technol. 67 (10), 2175 (2007).CrossRefGoogle Scholar
  40. 40.
    A. V. Yakimanskii and B. M. Ginzburg, Zh. Prikl. Khim. 73, 688 (2000).Google Scholar
  41. 41.
    A. M. Valenkov, I. V. Gofman, K. S. Nosov, V. M. Shapovalov, and V. E. Yudin, Russ. J. Appl. Chem. 84 (5), 735 (2011).CrossRefGoogle Scholar
  42. 42.
    A. Tuteja, P. M. Duxbury, and M. E. Mackay, Macromolecules 40 (26), 9427 (2007).CrossRefGoogle Scholar
  43. 43.
    M. Mu, N. Clarke, R. J. Composto, and K. I. Winey, Macromolecules 44 (18), 191 (2011).CrossRefGoogle Scholar
  44. 44.
    V. V. Guzeev, M. N. Rafikov, and Yu. M. Malinskii, Vysokomol. Soedin., Ser. A 17 (4), 804 (1975).Google Scholar
  45. 45.
    V. V. Guzeev, M. N. Rafikov, and Yu. M. Malinskii, Vysokomol. Soedin., Ser. B 20 (5), 387 (1978).Google Scholar
  46. 46.
    M. Mu, R. J. Composto, N. Clarke, and K. I. Winey, Macromolecules 42 (21), 8365 (2009).CrossRefGoogle Scholar
  47. 47.
    Graphite, Graphene, and Their Polymer Nanocomposites, Ed. by P. Mukhopadhyay and R. K. Gupta (CRC Press, Boca Raton, 2012).Google Scholar
  48. 48.
    V. D. Punethaa, S. Rana, H. J. Yoo, A. Chaurasia, Jr., J. T. McLeskey, M. S. Ramasamy, N. G. Sahoo, and J. W. Cho, Prog. Polym. Sci. 67, 1 (2017).CrossRefGoogle Scholar
  49. 49.
    V. Georgakilas, J. N. Tiwari, K. C. Kemp, J. A. Perman, A. B. Bourlinos, K. S. Kim, and R. Zboril, Chem. Rev. 116 (9), 5464 (2016).CrossRefGoogle Scholar
  50. 50.
    G. Heinrich, M. Klüppel, and T. A. Vilgis, Curr. Opin. Solid State Mater. Sci. 6, 195 (2002).CrossRefGoogle Scholar
  51. 51.
    G. Huber, T. A. Vilgis, and G. Heinrich, J. Phys.: Condens. Matter 8, L409 (1996).Google Scholar
  52. 52.
    G. Heinrich and T. A. Vilgis, Macromol. Symp. 93, 253 (1995).CrossRefGoogle Scholar
  53. 53.
    A. I. Leonov, J. Rheol. 34, 1039 (1990).CrossRefGoogle Scholar
  54. 54.
    C. Wang, Z.-X. Guo, S. Fu, W. Wu, and D. Zhu, Prog. Polym. Sci. 29 (11), 1079 (2004).CrossRefGoogle Scholar
  55. 55.
    F. Hussain, M. Hojjati, M. Okamoto, and R. E. Gorga, J. Compos. Mater. 40, 1511 (2006).CrossRefGoogle Scholar
  56. 56.
    S. W. Kim, T. Kim, Y. S. Kim, H. S. Choi, H. J. Lim, S. J. Yang, and C. R. Park, Carbon 50, 3 (2012).CrossRefGoogle Scholar
  57. 57.
    Computer Simulations of Liquids, Ed. by M. P. Allen and D. J. Tildesley (Oxford Sci. Publ., Oxford, 1987).Google Scholar
  58. 58.
    R. Zwanzig and A. K. Harrison, J. Chem. Phys. 83 (11), 5861 (1985).CrossRefGoogle Scholar
  59. 59.
    R. A. Omari, A. M. Aneese, C. A. Grabowski, and A. J. Mukhopadhyay, J. Phys. Chem. B 113 (25), 8449 (2009).CrossRefGoogle Scholar
  60. 60.
    H. Guo, G. Bourret, R. B. Lennox, M. Sutton, J. L. Harden, and R. L. Leheny, Phys. Rev. Lett. 109 (5), 055901 (2012).CrossRefGoogle Scholar
  61. 61.
    I. Kohli and A. Mukhopadhyay, Macromolecules 45 (15), 6143 (2012).CrossRefGoogle Scholar
  62. 62.
    I. Kohli, S. Alam, B. Patel, and A. Mukhopadhyay, Appl. Phys. Lett. 102 (20), 203705 (2013).CrossRefGoogle Scholar
  63. 63.
    F. B. Khorasani, R. Poling-Skutvik, R. Krishnamoorti, and J. C. Conrad, Macromolecules 47 (15), 5328 (2014).CrossRefGoogle Scholar
  64. 64.
    C. Xue, X. Zheng, K. Chen, Y. Tian, and G. Hu, J. Phys. Chem. Lett. 7 (3), 514 (2016).CrossRefGoogle Scholar
  65. 65.
    D. W. de Kort, W. H. Rombouts, F. J. M. Hoeben, H. Janssen, H. Van As, and J. P. M. van Duynhoven, Macromolecules 48 (20), 7585 (2015).CrossRefGoogle Scholar
  66. 66.
    R. Poling-Skutvik, R. Krishnamoorti, and J. C. Conrad, ACS Macro Lett. 4 (10), 1169 (2015).CrossRefGoogle Scholar
  67. 67.
    A.-Y. Jee, J. L. Curtis-Fisk, and S. Granick, Macromolecules 47 (16), 5793 (2014).CrossRefGoogle Scholar
  68. 68.
    T. Cherdhirankorn, A. Best, K. Koynov, K. Peneva, K. Muellen, and G. Fytas, J. Phys. Chem. B 113 (11), 3355 (2009).CrossRefGoogle Scholar
  69. 69.
    A. Tuteja, M. E. Mackay, S. Narayanan, S. Asokan, and M. S. Wong, Nano Lett. 7 (5), 1276 (2007).CrossRefGoogle Scholar
  70. 70.
    C. A. Grabowski, B. Adhikary, and A. Mukhopadhyaya, Appl. Phys. Lett. 94 (2), 021903 (2009).CrossRefGoogle Scholar
  71. 71.
    C. A. Grabowski and A. Mukhopadhyay, Macromolecules 47 (20), 7238 (2014).CrossRefGoogle Scholar
  72. 72.
    L. Maldonado-Camargo and C. Rinaldi, Nano Lett. 16 (11), 6767 (2016).CrossRefGoogle Scholar
  73. 73.
    J. Choi, M. Cargnello, C. B. Murray, N. Clarke, K. I. Winey, and R. J. Composto, ACS Macro Lett. 4 (9), 952 (2015).CrossRefGoogle Scholar
  74. 74.
    B. Carroll, V. Bocharova, J.-M. Y. Carrillo, A. Kisliuk, S. Cheng, U. Yamamoto, K. S. Schweizer, B. G. Sumpter, and A. P. Sokolov, Macromolecules 51 (6), 2268 (2018).CrossRefGoogle Scholar
  75. 75.
    M. Lungova, M. Krutyeva, W. Pyckhout-Hintzen, A. Wischnewski, M. Monkenbusch, J. Allgaier, M. Ohl, M. Sharp, and D. Richter, Phys. Rev. Lett. 117 (14), 147803 (2016).CrossRefGoogle Scholar
  76. 76.
    L.-H. Cai, S. Panyukov, and M. Rubinstein, Macromolecules 48 (3), 847 (2015).CrossRefGoogle Scholar
  77. 77.
    U. Yamamoto and K. S. Schweizer, Macromolecules 48 (1), 152 (2015).CrossRefGoogle Scholar
  78. 78.
    G. I. Gurevich, Deformability of Media and Development of Earth Wave (Nauka, Moscow, 1974) [in Russian].Google Scholar
  79. 79.
    R. Mangal, S. Srivastava, S. Narayanan, and L. A. Archer, Langmuir 32 (2), 596 (2016).CrossRefGoogle Scholar
  80. 80.
    S. Cheng, S.-J. Xie, J.-M. Y. Carrillo, B. Carroll, H. Martin, P.-F. Cao, M. D. Dadmun, B. G. Sumpter, V. N. Novikov, K. S. Schweizer, and A. P. Sokolov, ACS Nano 11 (1),752.Google Scholar
  81. 81.
    F. Brochard-Wyart and P. G. de Gennes, Eur. Phys. J. E: Soft Matter Biol. Phys. 1 (1), 93 (2000).CrossRefGoogle Scholar
  82. 82.
    L.-H. Cai, S. Panyukov, and M. Rubinstein, Macromolecules 44 (19), 7853 (2011).CrossRefGoogle Scholar
  83. 83.
    H. Nakanishi and S. Redner, Phys. Lett. A 88 (2), 67 (1982).CrossRefGoogle Scholar
  84. 84.
    V. M. Nazarychev, A. V. Lyulin, S. V. Larin, I. V. Gofman, J. M. Kenny, and S. V. Lyulin, Macromolecules 49 (17), 6700 (2016).CrossRefGoogle Scholar
  85. 85.
    M. Damaceanu, R. Rusu, M. Cristea, V. Musteata, M. Bruma, and A. Wolinska-Grabczyk, Macromol. Chem. Phys. 215 (16), 1573 (2014).CrossRefGoogle Scholar
  86. 86.
    A. V. Lyulin, J. Li, T. Mulder, B. Vorselaars, and M. A. J. Michels, Macromol. Symp. 237 (1),108.Google Scholar
  87. 87.
    V. M. Nazarychev, A. Yu. Dobrovskiy, S. V. Larin, A. V. Lyulin, and S. V. Lyulin, J. Polym. Sci., Part B: Polym. Phys. 56 (5), 375 (2018).CrossRefGoogle Scholar
  88. 88.
    C. Bennemann, W. Paul, K. Binder, and B. Dünweg, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 57 (1), 843 (1998).CrossRefGoogle Scholar
  89. 89.
    F. W. Starr, T. B. Schroder, and S. C. Glotzer, Macromolecules 35 (11), 4481 (2002).CrossRefGoogle Scholar
  90. 90.
    J. D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980).Google Scholar
  91. 91.
    S. V. Lyulin, S. V. Larin, A. A. Gurtovenko, N. V. Lukasheva, V. E. Yudin, V. M. Svetlichnyi, and A. V. Lyulin, Polym. Sci., Ser. A 54 (8), 631 (2012).CrossRefGoogle Scholar
  92. 92.
    V. M. Nazarychev, S. V. Larin, N. V. Lukasheva, A. D. Glova, and S. V. Lyulin, Polym. Sci., Ser. A 55 (9), 570 (2013).CrossRefGoogle Scholar
  93. 93.
    M. Doi and S. F. Edwards, Theory of Polymer Dynamics (Acad. Press, New York, 1986).Google Scholar
  94. 94.
    Yu. Ya. Gotlib, A. A. Darinskii, and Yu. E. Svetlov, Physical Kinetics of Macromolecules (Khimiya, Leningrad, 1986) [in Russian].Google Scholar
  95. 95.
    P. Langevin, C. R. Acad. Sci. 146, 530 (1908).Google Scholar
  96. 96.
    Y. E. Meroz and I. M. Sokolov, Phys. Rep. 573, 1 (2015).CrossRefGoogle Scholar
  97. 97.
    I. M. Sokolov, Soft Matter 8 (35), 9043 (2012).CrossRefGoogle Scholar
  98. 98.
    R. Metzler, J.-H. Jeon, A. G. Cherstvy, and E. Barkai, Phys. Chem. Chem. Phys. 16 (44), 24128 (2014).CrossRefGoogle Scholar
  99. 99.
    T. G. Mason, Rheol. Acta 39 (4), 371 (2000).CrossRefGoogle Scholar
  100. 100.
    T. A. Waigh, Rep. Prog. Phys. 79, 074601 (2016).CrossRefGoogle Scholar
  101. 101.
    GG. Vogiatzis and D. N. Theodorou, Arch. Comput. Methods Eng. 25, 591 (2018).CrossRefGoogle Scholar
  102. 102.
    Modeling and Prediction of Polymer Nanocomposite Properties, Ed. by V. Mittal (Wiley-VCH Verlag, Weinheim, 2013).Google Scholar
  103. 103.
    Simulation Methods for Polymers, Ed. by M. Kotelyanskii and D. N. Theodorou (CRC Press, Boca Raton, 2004).Google Scholar
  104. 104.
    J. L. Barrat, J. Baschnagel, and A. Lyulin, Soft Matter 6 (15), 3430 (2010).CrossRefGoogle Scholar
  105. 105.
    S. V. Lyulin, A. A. Gurtovenko, S. V. Larin, V. M. Nazarychev, and A. V. Lyulin, Macromolecules 46 (15), 6357 (2013).CrossRefGoogle Scholar
  106. 106.
    P. M. De Biase, S. Markosyan, and S. Noskov, J. Comput. Chem. 35 (9), 711 (2014).CrossRefGoogle Scholar
  107. 107.
    E. A. Cino, W.-Y. Choy, and M. Karttunen, J. Chem. Theory Comput. 8 (8), 2725 (2012).CrossRefGoogle Scholar
  108. 108.
    S. V. Lyulin, S. V. Larin, A. A. Gurtovenko, V.M. Nazarychev, S. G. Falkovich, V. E. Yudin, V. M. Svetlichnyi, I. V. Gofman, and A. V. Lyulin, Soft Matter 10, 1224 (2014).CrossRefGoogle Scholar
  109. 109.
    J. Liu, D. Cao, and L. Zhang, J. Phys. Chem. C 112 (17), 6653 (2008).CrossRefGoogle Scholar
  110. 110.
    J. T. Kalathi, U. Yamamoto, K. S. Schweizer, G. S. Grest, and S. K. Kumar, Phys. Rev. Lett. 112 (10), 108301 (2014).CrossRefGoogle Scholar
  111. 111.
    U. Yamamoto, J.-M. Y. Carrillo, V. Bocharova, A. P. Sokolov, B. G. Sumpter, and K. S. Schweizer, Macromolecules 51 (6), 2258 (2018).CrossRefGoogle Scholar
  112. 112.
    A. Patti, J. Phys. Chem. B 118 (13), 3731 (2014).CrossRefGoogle Scholar
  113. 113.
    Physical Properties of Polymers Handbook, Ed. by J. E. Mark (Springer-Verlag, New York, 2007).Google Scholar
  114. 114.
    I. V. Volgin, S. V. Larin, E. Abad, and S. V. Lyulin, Macromolecules 50 (5), 2207 (2017).CrossRefGoogle Scholar
  115. 115.
    I. V. Volgin, S. V. Larin, A. V. Lyulin, and S. V. Lyulin, Polymer 145, 80 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations