Advertisement

Polymer Science, Series C

, Volume 60, Supplement 1, pp 56–65 | Cite as

Parking Garage Bicontinuous Structures of Densely Grafted Layers of Amphiphilic Homopolymers

  • A. A. LazutinEmail author
  • V. V. Vasilevskaya
Article
  • 26 Downloads

Abstract

The features of self-organization of densely grafted layers of macromolecules composed of amphiphilic units in selective solvent have been studied by computer simulation. Depending on solvent quality, strands and lamellas with different period can form in these layers, and the rearrangement of some lamellas into others proceeds by the formation of parking garage bicontinuous structure where lamellas with different periods are separated in height and bound to each other via inclined bridges. A method of quantitative description of parking garage structure has been suggested, the range of its existence has been determined, and the presence of a hysteresis on the plot of the position of the interface of lamellas vs. solvent quality has been revealed. It has been shown that the formation of parking garage structure occurs as a first-order phase transition with heat capacity maximum.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. J. Brittain, S. G. Boyes, A. M. Granville, M. Baum, B. K. Mirous, B. Akgun, B. Zhao, C. Blickle, and M. D. Foster, “Surface Rearrangement of Diblock Copolymer Brushes—Stimuli Responsive Films,” in Surface-Initiated Polymerization II, Ed. by R. Jordan, in Advances in Polymer Science (Springer, Berlin, 2006), Vol.198.Google Scholar
  2. 2.
    S. Minko, J. Macromol. Sci., Polym. Rev. 46 (4), 397 (2006).CrossRefGoogle Scholar
  3. 3.
    A. Kumar, A. Srivastava, I. Yu. Galaev, and B. Mattiasson, Prog. Polym. Sci. 32 (10), 1205 (2007).CrossRefGoogle Scholar
  4. 4.
    J. O. Zoppe, N. C. Ataman, P. Mocny, J. Wang, J. Moraes, and H.-A. Klok, Chem. Rev. 117 (3), 1105 (2017).CrossRefGoogle Scholar
  5. 5.
    O. V. Borisov, E. B. Zhulina, and T. M. Birshtein, Vysokomol. Soedin., Ser. A 30 (4), 767 (1988).Google Scholar
  6. 6.
    A. Halperin, M. Tirrell, and T. P. Lodge, “Tethered Chains in Polymer Microstructures,” in Macromolecules: Synthesis, Order and Advanced Properties, in Advances in Polymer Science (Springer-Verlag, Berlin; Heidelberg, 1992), Vol. 100, pp. 31–71.Google Scholar
  7. 7.
    S. K. Pattanayek, T. T. Pham, and G. G. Pereira, J. Chem. Phys. 122 (21), 214908 (2005).CrossRefGoogle Scholar
  8. 8.
    K. Binder and A. Milchev, J. Polym. Sci., Polym. Phys. Ed. 50 (22), 1515 (2012).CrossRefGoogle Scholar
  9. 9.
    M. A. Carignano and I. Szleifer, Macromolecules 27 (3), 702 (1994).CrossRefGoogle Scholar
  10. 10.
    D. J. Irvine, A. M. Mayes, and L. Griffith-Cima, Macromolecules 29 (18), 6037 (1996).CrossRefGoogle Scholar
  11. 11.
    H. Merlitz, C.-X. Wu, and J.-U. Sommer, Macromolecules 44 (17), 7043 (2011).CrossRefGoogle Scholar
  12. 12.
    A. A. Polotsky, F. A. M. Leermakers, E. B. Zhulina, and T. M. Birshtein, Macromolecules 45 (17), 7260 (2012).CrossRefGoogle Scholar
  13. 13.
    E. B. Zhulina and T. A. Vilgis, Macromolecules 28 (4), 1008 (1995).CrossRefGoogle Scholar
  14. 14.
    H. Maleki and P. E. Theodorakis, J. Phys.: Condens. Matter 23 (50), 505104 (2011).Google Scholar
  15. 15.
    W. M. de Vos, F. A. M. Leermakers, S. Lindhoud, and S. W. Prescott, Macromolecules 44 (7), 2334 (2011).CrossRefGoogle Scholar
  16. 16.
    G. T. Pickett, Macromolecules 34 (25), 8784 (2001).CrossRefGoogle Scholar
  17. 17.
    C.-W. Li, H. Merlitz, C.-X. Wu, and J.-U. Sommer, Polymer 98, 437 (2016).CrossRefGoogle Scholar
  18. 18.
    O. V. Borisov, A. A. Polotsky, O. V. Rud, E. B. Zhulina, F. A. M. Leermakers, and T. M. Birshtein, Soft Matter 10 (13), 2093 (2014).CrossRefGoogle Scholar
  19. 19.
    E. B. Zhulina, F. A. M. Leermakers, and O. V. Borisov, Polymer 120, 223 (2017).CrossRefGoogle Scholar
  20. 20.
    S.-M. Cui and Z. Y. Chen, Phys. Revs. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 55 (2), 1660 (1997).CrossRefGoogle Scholar
  21. 21.
    A. A. Polotsky, T. Gillich, O. V. Borisov, F. A. M. Leermakers, M. Textor, and T. M. Birshtein, Macromolecules 43 (22), 9555 (2010).CrossRefGoogle Scholar
  22. 22.
    A. A. Polotsky, A. D. Kazakov, and T. M. Birshtein, Polymer 130, 242 (2017).CrossRefGoogle Scholar
  23. 23.
    A. A. Polotsky, F. A. M. Leermakers, and T. M. Birshtein, Macromolecules 48 (7), 2263 (2015).CrossRefGoogle Scholar
  24. 24.
    D. Romeis and J.-U. Sommer, ACS Appl. Mater. Interfaces 7 (23), 12496 (2015).CrossRefGoogle Scholar
  25. 25.
    E. Zhulina and A. C. Balazs, Macromolecules 29 (7), 2667 (1996).CrossRefGoogle Scholar
  26. 26.
    G.-L. He, H. Merlitz, J.-U. Sommer, and C.-X. Wu, Macromolecules 42 (18), 7194 (2009).CrossRefGoogle Scholar
  27. 27.
    E. B. Zhulina, C. Singh, and A. C. Balazs, Macromolecules 29 (19), 6338 (1996).CrossRefGoogle Scholar
  28. 28.
    E. B. Zhulina, C. Singh, and A. C. Balazs, Macromolecules 29 (25), 8254 (1996).CrossRefGoogle Scholar
  29. 29.
    D. Meng and Q. Wang, J. Chem. Phys. 130 (13), 134904 (2009).CrossRefGoogle Scholar
  30. 30.
    Y. Yin, P. Sun, B. Li, T. Chen, Q. Jin, D. Ding, and A.-C. Shi, Macromolecules 40 (14), 5161 (2007).CrossRefGoogle Scholar
  31. 31.
    M. W. Matsen and G. H. Griffiths, Eur. Phys. J. E: Soft Matter Biol. Phys. 29 (2), 219 (2009).CrossRefGoogle Scholar
  32. 32.
    O. A. Guskova and C. Seidel, Macromolecules 44 (3), 671 (2011).CrossRefGoogle Scholar
  33. 33.
    G. Brown, A. Chakrabarti, and J. F. Marko, Macromolecules 28 (23), 7817 (1996).CrossRefGoogle Scholar
  34. 34.
    P. G. Ferreira and L. Leibler, J. Chem. Phys. 105 (20), 9362 (1996).CrossRefGoogle Scholar
  35. 35.
    M. K. Glagolev, V. V. Vasilevskaya, and A. R. Khokhlov, Polym. Sci., Ser. A 54 (9), 767 (2012).CrossRefGoogle Scholar
  36. 36.
    A. A. Rudov, P. G. Khalatur, and I. I. Potemkin, Macromolecules 45 (11), 4870 (2012).CrossRefGoogle Scholar
  37. 37.
    A. A. Mercurieva, F. A. M. Leermakers, T. M. Birshtein, G. J. Fleer, and E. B. Zhulina, Macromolecules 33 (3), 1072 (2000).CrossRefGoogle Scholar
  38. 38.
    E. B. Zhulina, F. A. M. Leermakers, and O. V. Borisov, Polymer 120, 223 (2017).CrossRefGoogle Scholar
  39. 39.
    E. N. Govorun and D. E. Larin, Polym. Sci., Ser. A 56 (6), 770 (2014).CrossRefGoogle Scholar
  40. 40.
    D. E. Larin and E. N. Govorun, Langmuir 33 (34), 8545 (2017).CrossRefGoogle Scholar
  41. 41.
    A. A. Lazutin, E. N. Govorun, V. V. Vasilevskaya, and A. R. Khokhlov, J. Chem. Phys. 142 (18), 184904 (2015).CrossRefGoogle Scholar
  42. 42.
    D. E. Larin, A. A. Lazutin, E. N. Govorun, and V. V. Vasilevskaya, Langmuir 32 (27), 7000 (2016).CrossRefGoogle Scholar
  43. 43.
    A. A. Lazutin, V. V. Vasilevskaya, and A. R. Khokhlov, Soft Matter 13 (45), 8525 (2017).CrossRefGoogle Scholar
  44. 44.
    I. M. Okhapkin, E. E. Makhaeva, and A. R. Khokhlov, Colloid Polym. Sci. 284 (2), 117 (2005).CrossRefGoogle Scholar
  45. 45.
    I. M. Okhapkin, A. A. Askadskii, V. A. Markov, E. E. Makhaeva, A. R. Khokhlov, Colloid Polym. Sci. 284 (6), 575 (2006).CrossRefGoogle Scholar
  46. 46.
    A. A. Glagoleva and V. V. Vasilevskaya, J. Chem. Phys. 147 (19), 184902 (2017).CrossRefGoogle Scholar
  47. 47.
    V. V. Vasilevskaya, P. G. Khalatur, and A. R. Khokhlov, Macromolecules 36 (26), 10103 (2003).CrossRefGoogle Scholar
  48. 48.
    A. S. Ushakova, E. N. Govorun, and A. R. Khokhlov, J. Phys.: Condens. Matter 18 (3), 915 (2006).Google Scholar
  49. 49.
    E. A. Maresov and A. N. Semenov, Macromolecules 41 (23), 9439 (2008).CrossRefGoogle Scholar
  50. 50.
    A. R. Khokhlov, A. N. Semenov, and A. V. Subbotin, Eur. Phys. J. 17 (3), 283 (2005).Google Scholar
  51. 51.
    A. V. Subbotin and A. N. Semenov, Polym. Sci., Ser. C 54 (1), 36 (2012).CrossRefGoogle Scholar
  52. 52.
    A. A. Glagoleva, V. V. Vasilevskaya, and A. R. Khokhlov, Macromol. Theory Simul. 24 (4), 393 (2005).CrossRefGoogle Scholar
  53. 53.
    D. E. Larin, A. A. Glagoleva, E. N. Govorun, and V. V. Vasilevskaya, Polymer 146, 230 (2018).CrossRefGoogle Scholar
  54. 54.
    L.-H. Wang, T. Wu, Z. Zhang, and Y.-Z. You, Macromolecules 49 (1), 362 (2016).CrossRefGoogle Scholar
  55. 55.
    S. Plimpton, J. Comput. Phys. 117 (1), 1 (1995).CrossRefGoogle Scholar
  56. 56.
    A. Peterlin, Polymer 2, 257 (1961).CrossRefGoogle Scholar
  57. 57.
    F. F. Abraham and Y. Singh, J. Chem. Phys. 67, 2384 (1977).CrossRefGoogle Scholar
  58. 58.
    N. I. Fisher, in Statistical Analysis of Circular Data (Cambridge Univ. Press, Cambridge, 1995).Google Scholar
  59. 59.
    A. Arora, D. C. Morse, F. S. Bates, and K. D. Dorfman, Soft Matter 11 (24), 4862 (2015).CrossRefGoogle Scholar
  60. 60.
    M. Krone, J. E. Stone, T. Ertl, and K. Schulten, in EuroVis Short Papers of Eurographics/IEEE Conference on Visualization, Vienna, Austria, 2012 (Vianna, 2012), p.67.Google Scholar
  61. 61.
    V. Sadovnichy, A. Tikhonravov, Vl. Voevodin, and V. Opanasenko, “Lomonosov”: Supercomputing at Moscow State University,” in Contemporary High Performance Computing: From Petascale toward Exascale (Chapman and Hall/CRC Computational Science) (CRC Press, Boca Raton, 2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  2. 2.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations