Polymer Science, Series C

, Volume 60, Supplement 1, pp 135–147 | Cite as

Chirality in Self-Assembling Rod-Coil Copolymers: Macroscopic Homochirality Versus Local Chirality

  • Yu. A. Kriksin
  • I. I. Potemkin
  • P. G. KhalaturEmail author


We study chiral mesophases arising as a result of the interplay between microphase separation and orientational ordering in diblock rod-coil copolymers. It is shown that nearly compositionally symmetric copolymers form a columnar structure with twisted rod-rich domains, whereas there is a suppression of the lamellar morphologies with respect to the columnar one. Using high-resolution three-dimensional self-consistent field simulations, we show that chirality in the unit cell of the hexagonal phase develops in two different ways, leading to either homochiral state or heterochiral (locally chiral) state. Thus, chiral polarization, which occurs when the rigid and flexible blocks are segregated, causes a transition to two degenerate chiral states. In a system with many twisted domains, the magnitude of the chirality charge obeys the binomial distribution with random selection of the twist direction for each of the rod-rich domains. We suggest a model of pseudodynamical structural evolution aimed at understanding of how chirality arises from the achiral state and how it evolves. At the initial stage of the evolutionary process, there exists some waiting time for the onset of irreversible changes in chirality; during this time the system flips between the two chirality states.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Q. Wang, Soft Matter 7, 3711 (2011).CrossRefGoogle Scholar
  2. 2.
    D. de las Heras, S. Varga, and F. J. Vesely, J. Chem. Phys. 134, 214902 (2011).CrossRefGoogle Scholar
  3. 3.
    S.-H. Lin, C.-C. Ho, and W.-F. Su, Soft Matter 8, 4890 (2012).CrossRefGoogle Scholar
  4. 4.
    H. Wu, L. He, X. Wang, and Y. Wang, Z. Jiang, Soft Matter 10, 6278 (2014).CrossRefGoogle Scholar
  5. 5.
    J.-H. Huang, Zh.-X. Fan, and Z.-X. Ma, J. Chem. Phys. 139, 064905 (2013).CrossRefGoogle Scholar
  6. 6.
    G. H. Fredrickson, V. Ganesan, and F. Drolet, Macromolecules 35, 16 (2002).CrossRefGoogle Scholar
  7. 7.
    G. H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (International Series of Monographs on Physics) (Oxford Univ. Press, New York, 2006).Google Scholar
  8. 8.
    R. R. Netz and M. Schick, Phys. Rev. Lett. 77, 302 (1996).CrossRefGoogle Scholar
  9. 9.
    M. W. Matsen and C. Barrett, J. Chem. Phys. 109, 4108 (1998).CrossRefGoogle Scholar
  10. 10.
    W. Li and D. Gersappe, Macromolecules 34, 6783 (2001).CrossRefGoogle Scholar
  11. 11.
    D. Duchs and D. E. Sullivan, J. Phys.: Condens. Matter 14, 12189 (2002).Google Scholar
  12. 12.
    V. Pryamitsyn and V. Ganesan, J. Chem. Phys. 120, 5824 (2004).CrossRefGoogle Scholar
  13. 13.
    M. Shah, V. Pryamitsyn, and V. Ganesan, Macromolecules 41, 218 (2008).CrossRefGoogle Scholar
  14. 14.
    W. Song, P. Tang, H. Zhang, Y. Yang, and A.-C. Shi, Macromolecules 42, 6300 (2009).CrossRefGoogle Scholar
  15. 15.
    G. Yang, P. Tang, Y. Yang, and Q. Wang, J. Phys. Chem. B 114, 14897 (2010).CrossRefGoogle Scholar
  16. 16.
    W. Song, P. Tang, F. Qiu, Y. Yang, and A.-C. Shi, Soft Matter 7, 929 (2011).CrossRefGoogle Scholar
  17. 17.
    J. Gao, W. Song, P. Tang, and Y. Yang, Soft Matter 7, 5208 (2011).CrossRefGoogle Scholar
  18. 18.
    W. Song, P. Tang, F. Qiu, Y. Yang, and A.-C. Shi, J. Phys. Chem. B 115, 8390 (2011).CrossRefGoogle Scholar
  19. 19.
    X. Zhu, L. Wang, and J. Lin, J. Phys. Chem. B 117, 5748 (2013).CrossRefGoogle Scholar
  20. 20.
    J. Gao, P. Tang, and Y. Yang, Soft Matter 9, 69 (2013).CrossRefGoogle Scholar
  21. 21.
    S. Li, Y. Jiang, and J. Z. Y. Chen, Soft Matter 10, 8932 (2014).CrossRefGoogle Scholar
  22. 22.
    Yu. A. Kriksin and P. G. Khalatur, Macromol. Theory Simul. 21, 382 (2012).CrossRefGoogle Scholar
  23. 23.
    J. Tang, Y. Jiang, X. Zhang, D. Yan, and J. Z. Y. Chen. Macromolecules 48, 9060 (2015).CrossRefGoogle Scholar
  24. 24.
    X. Xu and Y. Jiang, Int. J. Mod. Phys. B 32, 1840006 (2018).CrossRefGoogle Scholar
  25. 25.
    J. Yu, F. Liu, P. Tang, F. Qiu, H. Zhang, and Y. Yang, Polymers 8, 184 (2016).CrossRefGoogle Scholar
  26. 26.
    Yu. A. Kriksin, S.-H. Tung, P. G. Khalatur, and A. R. Khokhlov, Polym. Sci., Ser. C 55, 74 (2013).CrossRefGoogle Scholar
  27. 27.
    P. G. Khalatur and A. R. Khokhlov, Soft Matter 9, 10943 (2013).CrossRefGoogle Scholar
  28. 28.
    Yu. A. Kriksin, P. G. Khalatur, and A. R. Khokhlov, “Supercomputer Simulation of Nanostructures in Copolymers with Flexible and Rigid Blocks,” in Supercomputing Technologies in Science, Education and Industry, Ed. by V. A. Sadovnichiy, G. I. Savin, and V. V. Voevodin (Moscow Univ. Press, Moscow, 2014), pp. 145–154.Google Scholar
  29. 29.
    Yu. A. Kriksin, I. Ya. Erukhimovich, P. G. Khalatur, Yu. G. Smirnova, and G. ten Brinke, J. Chem. Phys. 128, 244903 (2008).CrossRefGoogle Scholar
  30. 30.
    Yu. A. Kriksin, P. G. Khalatur, I. Ya. Erukhimovich, G. ten Brinke, and A. R. Khokhlov, Soft Matter 5, 2896 (2009).CrossRefGoogle Scholar
  31. 31.
    Yu. A. Kriksin, P. G. Khalatur, I. V. Neratova, A. R. Khokhlov, and L. A. Tsarkova, J. Phys. Chem. C 115, 25185 (2011).CrossRefGoogle Scholar
  32. 32.
    V. I. Lebedev and D. N. Laikov, Dokl. Math. 59, 477 (1999).Google Scholar
  33. 33.
    N. Sary, C. Brochon, G. Hadziioannou, and R. Mezzeng, Eur. Phys. J. E: Soft Matter Biol. Phys. 24, 379 (2007).CrossRefGoogle Scholar
  34. 34.
    L. Leibler, Macromolecules 13, 1602 (1980).CrossRefGoogle Scholar
  35. 35.
    A. N. Semenov and S. V. Vasilenko, Sov. Phys. JETP 63, 70 (1986).Google Scholar
  36. 36.
    E. Helfand and Z. R. Wasserman, in Developments in Block Copolymers, Ed. by I. Goodman (Appl. Sci., New York, 1982), Vol.1.Google Scholar
  37. 37.
    A. N. Semenov, Mol. Cryst. Liq. Cryst. 209, 191 (1991).CrossRefGoogle Scholar
  38. 38.
    W. Maier and A. Saupe, Z. Naturforsch., A: Astrtophys., Phys. Phys. Chem. 13, 564 (1958).Google Scholar
  39. 39.
    B. Y. Drovetsky, A. J. Liu, and C. H. Mak, J. Chem. Phys. 111, 4334 (1999).CrossRefGoogle Scholar
  40. 40.
    M. A. Osipov, B. T. Pickup, and D. A. Dunmur, Mol. Phys. 84, 1193 (1995).CrossRefGoogle Scholar
  41. 41.
    M. Solymosi, R. J. Low, M. Grayson, and M. P. Neal, J. Chem. Phys. 116, 9875 (2002).CrossRefGoogle Scholar
  42. 42.
    M. P. Neal, M. Solymosi, M. R. Wilson, and D. J. Earl, J. Chem. Phys. 119, 3567 (2003).CrossRefGoogle Scholar
  43. 43.
    A. Pietropaolo, L. Muccioli, R. Berardi, and C. Zannoni, Proteins 70, 667 (2008).CrossRefGoogle Scholar
  44. 44.
    N. Weinberg and K. Mislow, Can. J. Chem. 78, 41 (2000).CrossRefGoogle Scholar
  45. 45.
    G. Millar, N. Weinberg, and K. Mislow, Mol. Phys. 103, 2769 (2005).CrossRefGoogle Scholar
  46. 46.
    S. Becke, S. Haller, M. A. Osipov, and F. Giesselmann, Mol. Phys. 108, 573 (2010).CrossRefGoogle Scholar
  47. 47.
    A. R. A. Palmans, J. A. J. M. Vekemans, E. E. Havinga, and E. W. Meijer, Angew. Chem., Int. Ed. Engl. 36, 2648 (1997).CrossRefGoogle Scholar
  48. 48.
    P. B. Kohl and D. L. Patrick, J. Phys. Chem. B 105, 8203 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. A. Kriksin
    • 1
  • I. I. Potemkin
    • 2
    • 3
    • 4
  • P. G. Khalatur
    • 5
    • 6
    Email author
  1. 1.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Physics DepartmentLomonosov Moscow State UniversityMoscowRussia
  3. 3.DWI—Leibniz Institute for Interactive MaterialsAachenGermany
  4. 4.National Research South Ural State UniversityChelyabinskRussia
  5. 5.Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  6. 6.Institute of Advanced Energy-Related NanomaterialsUniversity of UlmUlmGermany

Personalised recommendations