Advertisement

Polymer Science, Series C

, Volume 60, Supplement 1, pp 84–94 | Cite as

Polydisperse Brush with the Linear Density Profile

  • L. I. Klushin
  • A. M. SkvortsovEmail author
  • S. Qi
  • F. Schmid
Article
  • 39 Downloads

Abstract

Macromolecules densely end-grafted to a planar solid surface form a polymer monolayer (brush). It is known that, in a good solvent, the density profile of monodisperse brushes parabolically decays on moving away from the plane. Using the analytical theory and computer simulation methods, we studied the structure of a polydisperse brush from homopolymers, for which molecular-mass distribution is set by the Schulz–Zimm distribution. It is found that, at a polydispersity index of 1.143, the polymer brush in a good solvent has a linear density profile. In this brush, the average distance of chain ends to the grafting plane is proportional to the square of their contour length. If any chain of the brush is chemically modified so that it will be able to adsorb on the grafting surface, then the adsorption of this chain inside the brush will proceed via a discontinuous first-order phase transition with the bimodal distribution of the order parameter (free end height). This transition has unusual features: the energy of adsorption corresponding to the midpoint of the transition is proportional to the contour length of the adsorbing chain N, the sharpness of the transition is proportional to N2, and the height of the barrier separating adsorbed and desorbed states is proportional to N3. The predicted dependences are verified by computer simulation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Ayres, Polym. Chem. 1, 769 (2010).CrossRefGoogle Scholar
  2. 2.
    G. D. Bixler and B. Bhushan, Philos. Trans. R. Soc., A 370, 2381 (2012).CrossRefGoogle Scholar
  3. 3.
    B. Zdyrko, V. Klep, X. Li, Q. Kang, S. Minko, X. Wen, and I. Luzinov, Mater. Sci. Eng., A 29, 680 (2009).CrossRefGoogle Scholar
  4. 4.
    J. Klein, D. Perahia, and S. Warburg, Nature 352, 143 (1991).CrossRefGoogle Scholar
  5. 5.
    M. K. Singh, P. Ilg, R. M. Espinosa-Marzal, M. Kroger, and N. D. Spencer, Langmuir 31, 4805 (2015).Google Scholar
  6. 6.
    J. Klein, Science 323, 47 (2009).CrossRefGoogle Scholar
  7. 7.
    Stuart M. A. Cohen, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Scleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, L. Lusinov, and S. Minko, Nat. Matter 9, 101 (2010).CrossRefGoogle Scholar
  8. 8.
    Handbook of Stimuli-Responsive Materials, Ed. by U. U. Marek (Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, 2011).Google Scholar
  9. 9.
    W. L. Chen, R. Cordero, H. Tran, and C. K. Ober, Macromolecules 50, 4089 (2017).CrossRefGoogle Scholar
  10. 10.
    S. Alexander, J. Phys. (Paris) 38, 977 (1977).CrossRefGoogle Scholar
  11. 11.
    A. A. Gorbunov, I. V. Pavlushkov, and A. M. Skvortsov, Vysokomol. Soedin., Ser. A 30 (2), 431 (1988).Google Scholar
  12. 12.
    A. M. Skvortsov, I. V. Pavlushkov, and A. A. Gorbunov, Vysokomol. Soedin., Ser. A 30 (4), 503 (1988).Google Scholar
  13. 13.
    A. M. Skvortsov, I. V. Pavlushkov, A. A. Gorbunov, E. B. Zhulina, O. V. Borisov, and V. A. Pryamitsyn, Vysokomol. Soedin., Ser. A 30 (8), 615 (1988).Google Scholar
  14. 14.
    E. B. Zhulina, V. A. Pryamitsyn, and O. V. Borisov, Vysokomol. Soedin., Ser. A 31 (1), 185 (1989).Google Scholar
  15. 15.
    S. T. Milner, T. A. Witten, and M. Cates, Europhys. Lett. 5, 413 (1988).CrossRefGoogle Scholar
  16. 16.
    S. T. Milner, T. A. Witten, and M. Cates, Macromolecules 21, 2610 (1988).CrossRefGoogle Scholar
  17. 17.
    S. Hirz, Masters Thesis (Univ. Minnesota, 1986).Google Scholar
  18. 18.
    S. T. Milner, Science 251, 905 (1991).CrossRefGoogle Scholar
  19. 19.
    S. T. Milner, T. A. Witten, and M. Cates, Macromolecules 22, 853 (1989).CrossRefGoogle Scholar
  20. 20.
    G. J. Fleer, M. A. Cohen-Stuart, J. M. H. M. Scheutjens, T. Cosgrove, and B. Vinsent, in Polymer at Interfaces (Chapman and Hall, London, 1993).Google Scholar
  21. 21.
    E. B. Zhulina, O. V. Borisov, V. A. Pryamitsyn, and T. M. Birshtein, Macromolecules 24, 140 (1991).CrossRefGoogle Scholar
  22. 22.
    T. M. Birshtein and V. M. Amoskov, Polym. Sci., Ser. C 42 (1), 172 (2000).Google Scholar
  23. 23.
    K. Binder and A. Milchev, J. Polym. Sci., Polym. Phys. Ed. 50, 1515 (2012).CrossRefGoogle Scholar
  24. 24.
    E. B. Zhulina, O. V. Borisov, and L. Brombacher, Macromolecules 24, 4679 (1991).CrossRefGoogle Scholar
  25. 25.
    C. M. Wijmans, E. B. Zhulina, and G. J. Fleer, Macromolecules 27, 3238 (1991).CrossRefGoogle Scholar
  26. 26.
    T. Kreer and S. M. Balko, ACS Macro Lett. 2, 944 (2013).CrossRefGoogle Scholar
  27. 27.
    J. I. Martin and Z. G. Wang, J. Phys. Chem. 99, 2833 (1995).CrossRefGoogle Scholar
  28. 28.
    T. Kreer, Soft Matter 12, 3479 (2016).CrossRefGoogle Scholar
  29. 29.
    A. A. Polotsky, F. A. M. Leermakers, E. B. Zhulina, and T. M. Birshtein, Macromolecules 45, 7260 (2012).CrossRefGoogle Scholar
  30. 30.
    A. A. Polotsky, A. D. Kazakov, and T. M. Birshtein, Polymer 130, 242 (2017).CrossRefGoogle Scholar
  31. 31.
    A. M. Laradji, C. D. McNitt, N. S. Yadavalli, V. V. Popik, and S. Minko, Macromolecules 49, 7625 (2016).CrossRefGoogle Scholar
  32. 32.
    C. S. Turgman, J. Srogl, D. Kiserow, and J. Genzer, Langmuir 31, 2372 (2015).CrossRefGoogle Scholar
  33. 33.
    B. M. Berg, H. Vink, and J. A. E. Spaan, Circ. Res. 92, 592 (2003).CrossRefGoogle Scholar
  34. 34.
    S. T. Milner, Europhys. Lett. 7, 695 (1988).CrossRefGoogle Scholar
  35. 35.
    S. Milner, T. Witten, and M. Cates, Macromolecules 22, 853 (1989).CrossRefGoogle Scholar
  36. 36.
    W. M. de Vos and F. A. M. Leermakers, Polymer 50, 305 (2009).CrossRefGoogle Scholar
  37. 37.
    QiS. Shuanhu, L. I. Klushin, A. M. Skvortsov, and F. Schmid, Macromolecules 49, 9665 (2016).CrossRefGoogle Scholar
  38. 38.
    L. I. Klushin, A. M. Skvortsov, A. A. Polotsky, Qi S. Shuanhu, and F. Schmid, Phys. Rev. Lett. 113, 068303 (2014).CrossRefGoogle Scholar
  39. 39.
    M. Laradji, H. Guo, and M. J. Zuckermann, Phys. Rev. E: Stat. Phys., Plasma, Fluids, Relat. Interdiscip. Top. 49, 3199 (1994).CrossRefGoogle Scholar
  40. 40.
    Qi S. Shuanhu, L. I. Klushin, A. M. Skvortsov, A. A. Polotsky, and F. Schmid, Macromolecules 48, 3775 (2015).CrossRefGoogle Scholar
  41. 41.
    G. V. Schulz, Z. Phys. Chem. (Meunchen, Ger.) 43, 25 (1939).Google Scholar
  42. 42.
    B. Zimm, J. Chem. Phys. 16, 1099 (1948).CrossRefGoogle Scholar
  43. 43.
    A. M. Skvortsov, A. A. Gorbunov, and L. I. Klushin, Macromolecules 30, 1818 (1997).CrossRefGoogle Scholar
  44. 44.
    M. L. Mansfield, J. Chem. Phys. 88, 6570 (1988).CrossRefGoogle Scholar
  45. 45.
    A. M. Skvortsov, L. I. Klushin, and T. M. Birshtein, Polym. Sci., Ser. A 51 (5), 469 (2009).CrossRefGoogle Scholar
  46. 46.
    L. I. Klushin and A. M. Skvortsov, J. Phys. A: Math. Theor. 44, 473001 (2011).CrossRefGoogle Scholar
  47. 47.
    M. Challa, D. Landau, and K. Binder, Phase Transform. 24–26, 343 (1990).CrossRefGoogle Scholar
  48. 48.
    F. Brochard-Wyart, Europhys. Lett. 23, 105 (1993).CrossRefGoogle Scholar
  49. 49.
    F. Brochard-Wyart, Europhys. Lett. 30, 387 (1995).CrossRefGoogle Scholar
  50. 50.
    Y. Marciano and F. Brochard-Wyart, Macromolecules 28, 985 (1995).CrossRefGoogle Scholar
  51. 51.
    L. I. Klushin and A. M. Skvortsov, Vysokomol. Soedin., Ser. A 32 (8) (1990).Google Scholar
  52. 52.
    H. Gao, K. Min, and K. Matyjaszewski, Macromol. Chem. Phys. 207, 1709 (2006).CrossRefGoogle Scholar
  53. 53.
    T. Chang, J. Polym. Sci., Polym. Phys. Ed. 43, 1591 (2005).CrossRefGoogle Scholar
  54. 54.
    H. Pasch and B. Trathnigg, in Multidimensional HPLC of Polymers (Springer, New York, 2013).CrossRefGoogle Scholar
  55. 55.
    S. Zhang, S. Qi, L. I. Klushin, A. M. Skvortsov, D. Yan, and F. Schmid, J. Chem. Phys. 147, 064902 (2017).CrossRefGoogle Scholar
  56. 56.
    A. M. Skvortsov, L. I. Klushin, A. A. Polotsky, and K. Binder, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 85, 031803 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. I. Klushin
    • 1
    • 2
  • A. M. Skvortsov
    • 3
    Email author
  • S. Qi
    • 4
  • F. Schmid
    • 4
  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Department of PhysicsAmerican University of BeirutBeirutLebanon
  3. 3.St. Petersburg State Chemical and Pharmaceutical AcademySt. PetersburgRussia
  4. 4.Institut für PhysikJohannes Gutenberg-UniversitätMainzGermany

Personalised recommendations