Advertisement

Polymer Science, Series C

, Volume 60, Supplement 1, pp 95–105 | Cite as

Association Equilibrium and Gelation in Solutions of Cross-Associating Chains Containing Inactive Fragments

  • I. Yu. GotlibEmail author
  • A. I. Victorov
Article
  • 16 Downloads

Abstract

Solutions of two cross-associating chain molecular species (n-chains and p-chains) containing both associative (“sticky”) and non-associative monomer links have been simulated by molecular dynamics. The inactive monomers increase the stickers’ association equilibrium constant due to the excluded volume effect. In a wide concentration range, the equilibrium constant can be approximated as a simple function of the total volume concentration of the inert monomers, the volume effectively excluded by one inert monomer being about the same at different mixture compositions. Characteristics of molecular aggregates formed at pre-gelation and gelation conditions are examined, including effects of local cyclization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Polymer Gels and Networks, Ed. by Y. Osada and A. Khokhlov (Marcel Dekker, New York, 2001).Google Scholar
  2. 2.
    “Gels: Structures, Properties, and Functions. Fundamentals and Applications,” Ed. by M. Tokita and K. Nishinari, in Progress in Colloid and Polymer Science (Springer, Berlin, Heidelberg, 2009).Google Scholar
  3. 3.
    P. Košovan, T. Richter, and C. Holm, in “Molecular Simulations of Hydrogels, in Intelligent Hydrogels,” Ed. by G. Sadowski and W. Richtering, in Progress in Colloid and Polymer Science, Ed. by F. Kremer and W. Richtering. (Springer Int. Publ., Berlin; Heidelberg, 2013).Google Scholar
  4. 4.
    “Supramolecular Polymer Networks and Gels,” Ed. by S. Seiffert, in Advances in Polymer Science (Springer Int. Publ., Heidelberg, 2015).Google Scholar
  5. 5.
    F. A. Escobedo and J. J. de Pablo, Phys. Rep. 318 (3), 85 (1999).CrossRefGoogle Scholar
  6. 6.
    S. K. Kumar and J. F. Douglas, Phys. Rev. Lett. 87 (18), 188301 (2001).CrossRefGoogle Scholar
  7. 7.
    H. Kobayashi and R. G. Winkler, Sci. Rep. 6, 19836 (2016).CrossRefGoogle Scholar
  8. 8.
    R. G. Pereyra, M. A. Al-Maadeed, and M. A. Carignano, eXPRESS Polym. Lett. 11, 199 (2017).CrossRefGoogle Scholar
  9. 9.
    N. Kamerlin, Doctoral Thesis (Uppsala University, Uppsala, 2017).Google Scholar
  10. 10.
    S. Tcyrulnikov and A. I. Victorov, Macromolecules 46 (11), 4706 (2013).CrossRefGoogle Scholar
  11. 11.
    A. N. Semenov and M. Rubinstein, Macromolecules 31 (4), 1373 (1998).CrossRefGoogle Scholar
  12. 12.
    I. Y. Gotlib, I. K. Malov, A. I. Victorov, and M. A. Voznesenskiy, J. Phys. Chem. B 120 (29), 7234 (2016).CrossRefGoogle Scholar
  13. 13.
    I. Gotlib and A. Victorov, Fluid Phase Equilib. 454, 116 (2017).CrossRefGoogle Scholar
  14. 14.
    H. Lee, A. H. de Vries, S.-J. Marrink, and R. W. Pastor, J. Phys. Chem. B 113 (40), 13186 (2009).CrossRefGoogle Scholar
  15. 15.
    W. G. Chapman, K. E. Gubbins, G. Jackson, and M. Radosz, Ind. Eng. Chem. Res. 29 (8),1709 (1990).CrossRefGoogle Scholar
  16. 16.
    E. A. Mueller and K. E. Gubbins, Ind. Eng. Chem. Res. 34 (10), 3662 (1995).CrossRefGoogle Scholar
  17. 17.
    H. E. Stanley, S. V. Buldyrev, M. Canpolat, M. Meyer, O. Mishima, M. R. Sadr-Lahijany, A. Scala, and F. W. Starr, Phys. A (Amsterdam, Neth.) 257 (1), 213 (1998).CrossRefGoogle Scholar
  18. 18.
    K. Emelyanova, I. Yu. Gotlib, A. Shishkina, and A. Victorov, J. Chem. Eng. Data 61 (12), 4013 (2016).CrossRefGoogle Scholar
  19. 19.
    S. Seiffert and J. Sprakel, Chem. Soc. Rev. 41 (2), 909 (2012).CrossRefGoogle Scholar
  20. 20.
    I. Kryven, J. Duivenvoorden, J. Hermans, and P. D. Iedema, Macromol. Theory Simul. 25 (5), 449 (2016).CrossRefGoogle Scholar
  21. 21.
    R. Wang, A. Alexander-Katz, J. A. Johnson, and B. D. Olsen, Phys. Rev. Lett. 116 (18), 188302 (2016).CrossRefGoogle Scholar
  22. 22.
    P. J. Flory, Principles of Polymer Chemistry (Cornell Univ. Press, Ithaca, N.Y., 1953).Google Scholar
  23. 23.
    I. Erukhimovich, M. V. Thamm, and A. V. Ermoshkin, Macromolecules 34 (16), 5653 (2001).CrossRefGoogle Scholar
  24. 24.
    I. Y. Erukhimovich and M. V. Tamm, J. Exp. Theor. Phys. Lett. 75 (3), 150 (2002).CrossRefGoogle Scholar
  25. 25.
    M. V. Tamm, PhD Thesis (Moscow State University, Moscow, 2002).Google Scholar
  26. 26.
    S. I. Kuchanov, S. V. Korolev, and S. V. Panyukov, “Graphs in Chemical Physics of Polymers,” in Advances in Chemical Physics, Ed. by I. Prigogine and S. A. Rice (John Wiley and Sons, Inc., New York, 1988), Vol. 72, pp. 115–326.Google Scholar
  27. 27.
    Z. Ahmad and R. F. T. Stepto, Colloid Polym. Sci. 258 (6), 663 (1980).CrossRefGoogle Scholar
  28. 28.
    H. Rolfes and R. F. T. Stepto, Macromol. Symp. 76 (1), 1 (1993).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Saint Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations