Advertisement

Polymer Science, Series C

, Volume 60, Supplement 1, pp 37–48 | Cite as

Effect of Counterion Size on the Structure of a Flexible Polyelectrolyte Chain in Low-Polar Solvents

  • Yu. D. Gordievskaya
  • E. Yu. KramarenkoEmail author
Article

Abstract

The influence of the counterion size on the conformational behavior of a single polyelectrolyte chain in a dilute solution in low-polar media has been studied by molecular dynamics. Modeling has been performed both for small counterions, which are smaller in size than the monomer unit, and for large counterions, which are several times larger in size than the monomer unit. It has been found that the chain gyration radius Rg depends nonmonotonically on the counterion size. The minimum value of Rg is observed when the size of counterions is comparable with the size of the monomer unit. The growth of Rg with increasing size of counterions results from the increasing contribution of excluded volume interactions, whereas its growth with decreasing size of counterions is due to the formation of elongated chains of dipoles. The dependence of the multiplet structure formed in media with strong electrostatic interactions on the fraction of charged chain units and the counterion size is analyzed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989) [in Russian].Google Scholar
  2. 2.
    E. Yu. Kramarenko, O. E. Philippova, and A. R. Khokhlov, Polym. Sci., Ser. C 48 (1), 1 (2006).CrossRefGoogle Scholar
  3. 3.
    A. R. Khokhlov, S. G. Starodubtzev, and V. V. Vasilevskaya, Adv. Polym. Sci. 109, 123 (1993).CrossRefGoogle Scholar
  4. 4.
    O. E. Philippova, Vysokomol. Soedin., Ser. C 42 (12), 208 (2000).Google Scholar
  5. 5.
    E. Yu. Kramarenko, A. R. Khokhlov, and K. Yoshikawa, Macromol. Theory Simul. 9 (5), 249 (2000).CrossRefGoogle Scholar
  6. 6.
    T. M. Birshtein, E. B. Zhulina, and O. V. Borisov, Vysokomol. Soedin., Ser. A 38 (4), 400 (1996).Google Scholar
  7. 7.
    O. V. Borisov, E. B. Zhulina, and T. M. Birshtein, Macromolecules 27 (17), 4795 (1994).CrossRefGoogle Scholar
  8. 8.
    E. B. Zhulina, T. M. Birshtein, and O. V. Borisov, Macromolecules 28 (5), 1491 (1995).CrossRefGoogle Scholar
  9. 9.
    E. B. Zhulina, O. V. Borisov, and T. M. Birshtein, Macromolecules 32 (24), 8189 (1999).CrossRefGoogle Scholar
  10. 10.
    V. V. Vasilevskaya, S. G. Starodubtsev, and A. R. Khokhlov, Vysokomol. Soedin., Ser. B 26 (12), 390 (1987).Google Scholar
  11. 11.
    V. Yu. Boryu and I. Ya. Erukhimovich, Dokl. Akad. Nauk SSSR 286, 1373 (1986).Google Scholar
  12. 12.
    V. Yu. Borue and I. Ya. Erukhimovich, Macromolecules 21 (11), 3240 (1988).CrossRefGoogle Scholar
  13. 13.
    I. A. Nyrkova, A. R. Khokhlov, and E. Yu. Kramarenko, Vysokomol. Soedin., Ser. A 32 (5), 918 (1990).Google Scholar
  14. 14.
    A. Eisenberg and J.-S. Kim, Introduction to Ionomers (Wiley, New York; Chichester; Weinheim; Brisbane; Singapore; Toronto, 1998).Google Scholar
  15. 15.
    A. R. Khokhlov and E. Yu. Kramarenko, Macromol. Theory Simul. 3 (1), 45 (1994).CrossRefGoogle Scholar
  16. 16.
    E. Yu. Kramarenko, A. R. Khokhlov, and K. Yoshikawa, Macromolecules 30, 3383 (1997).CrossRefGoogle Scholar
  17. 17.
    A. R. Khokhlov and E. Yu. Kramarenko, Macromolecules 29, 681 (1996).CrossRefGoogle Scholar
  18. 18.
    E. Yu. Kramarenko, I. Ya. Erukhimovich, and A. R. Khokhlov, Macromol. Theory Simul. 11 (5), 462 (2002).CrossRefGoogle Scholar
  19. 19.
    E. Yu. Kramarenko, I. Ya. Erukhimovich, and A. R. Khokhlov, Polym. Sci., Ser. A 46 (9), 974 (2004).Google Scholar
  20. 20.
    A. M. Rumyantsev and E. Y. Kramarenko, Soft Matter 13, 6831 (2017).CrossRefGoogle Scholar
  21. 21.
    N. Malikova, S. Cebašek, V. Glenisson, D. Bhowmik, G. Carrot, and V. Vlachy, Phys. Chem. Chem. Phys. 14, 12898 (2012).CrossRefGoogle Scholar
  22. 22.
    N. Malikova, A.-L. Rollet, S. Cebašek, M. Tomšic, and V. Vlachy, Phys. Chem. Chem. Phys. 17, 5650 (2015).CrossRefGoogle Scholar
  23. 23.
    D. Kawaguchi and M. Satoh, Macromolecules 32, 7828 (1999).CrossRefGoogle Scholar
  24. 24.
    N. Yasumoto, N. Kasahara, A. Sakaki, and M. Satoh, Colloid Polym. Sci. 284, 900 (2006).CrossRefGoogle Scholar
  25. 25.
    Y. Nishiyama and M. Satoh, J. Polym. Sci., Polym. Phys. Ed. 38, 2791 (2000).CrossRefGoogle Scholar
  26. 26.
    Y. Fukunaga, M. Hayashi, and M. Satoh, J. Polym. Sci., Polym. Phys. Ed. 45, 1166 (2007).CrossRefGoogle Scholar
  27. 27.
    M. Hayashi, M. Wakagawa, T. Minato, Y. Nishiyama, S. Kuroki, M. Satoh, J. Polym. Sci., Polym. Phys. Ed. 47, 2122 (2009).CrossRefGoogle Scholar
  28. 28.
    M. Wakagawa, M. Hayashi, S. Kuroki, and M. Satoh, J. Polym. Sci., Polym. Phys. Ed. 47, 2132 (2009).CrossRefGoogle Scholar
  29. 29.
    H. Mori, M. Wakagawa, S. Kuroki, and M. Satoh, Colloid Polym. Sci. 293, 1023 (2014).CrossRefGoogle Scholar
  30. 30.
    O. E. Philippova, A. M. Rumyantsev, E. Yu. Kramarenko, and A. R. Khokhlov, Macromolecules 46 (23), 9359 (2013).CrossRefGoogle Scholar
  31. 31.
    A. M. Rumyantsev, A. Pan, S. G. Roy, P. De, and E. Yu. Kramarenko, Macromolecules 49, 6630 (2016).CrossRefGoogle Scholar
  32. 32.
    I. Erel, Z. Zhu, S. Sukhishvili, E. Patyukova, I. Potemkin, and E. Kramarenko, Macromol. Rapid Commun. 31, 490 (2010).CrossRefGoogle Scholar
  33. 33.
    N. V. Brilliantov, D. V. Kuznetsov, and R. Klein, Phys. Rev. Lett. 81, 1433 (1998).CrossRefGoogle Scholar
  34. 34.
    J. Jeon and A. V. Dobrynin, Macromolecules 40, 7695 (2007).CrossRefGoogle Scholar
  35. 35.
    M. Muthukumar, J. Chem. Phys. 120, 9343 (2004).CrossRefGoogle Scholar
  36. 36.
    A. M. Tom, S. Vemparala, R. Rajesh, and N. V. Brilliantov, Phys. Rev. Lett. 117, 1 (2016).CrossRefGoogle Scholar
  37. 37.
    R. Kumar, A. Kundagrami, and M. Muthukumar, Macromolecules 42, 1370 (2009).CrossRefGoogle Scholar
  38. 38.
    H. Schiessel and P. Pincus, Macromolecules 31, 7953 (1998).CrossRefGoogle Scholar
  39. 39.
    A. S. Bodrova and I. I. Potemkin, Polym. Sci., Ser. A 49 (6), 737 (2007).CrossRefGoogle Scholar
  40. 40.
    L.-J. Qu, X. Zhang, J. Tang, L. Li, and D. Yan, J. Chem. Phys. 141 (10), 104905 (2014).CrossRefGoogle Scholar
  41. 41.
    J. Hua, M. K. Mitra, and M. Muthukumar, J. Chem. Phys. 136 (13), 134901 (2012).CrossRefGoogle Scholar
  42. 42.
    A. A. Gavrilov, A. V. Chertovich, and E. Yu. Kramarenko, Macromolecules 49, 1103 (2016).CrossRefGoogle Scholar
  43. 43.
    Yu. D. Gordievskaya, A. A. Gavrilov, and E. Yu. Kramarenko, Soft Matter 14, 1474 (2018).CrossRefGoogle Scholar
  44. 44.
    A. M. Tom, S. Vemparala, R. Rajesh, and N. V. Brilliantov, Soft Matter 13, 1862 (2017).CrossRefGoogle Scholar
  45. 45.
    R. Winkler, M. Gold, and P. Reineker, Phys. Rev. Lett. 80, 3731 (1998).CrossRefGoogle Scholar
  46. 46.
    A. G. Cherstvy, J. Phys. Chem. B 114, 5241 (2010).CrossRefGoogle Scholar
  47. 47.
    C. Von Ferber and H. Loewen, J. Chem. Phys. 118, 10774 (2003).CrossRefGoogle Scholar
  48. 48.
    G. Reddy and A. Yethiraj, Macromolecules 39, 8536 (2006).CrossRefGoogle Scholar
  49. 49.
    A. Chremos and J. F. Douglas, Gels 4, 20 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations