Polymer Science Series C

, Volume 56, Issue 1, pp 59–71 | Cite as

Electroluminescent lanthanide-containing polymers

  • L. N. Bochkarev
  • A. V. Rozhkov
  • M. N. Bochkarev
Article

Abstract

The data on the synthesis and physicochemical and photo- and electroluminescent properties of carbochain linear polymers containing ions of rare-earth metals bound via chemical or coordination bonds to the polymer chain are summarized. The effects of the ligand environment at lanthanide atoms and the structures of the polymers on their luminescence activity are considered. Possible approaches to increase the efficiency of electroluminescence of polymer lanthanide emitters are discussed.

Keywords

Polymer Science Series Carbazole Terbium Carbazole Group Diphenyl Phosphine Oxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Highly Efficient OLEDs with Phosphorescent Materials, Ed. by H. Yersin (Wiley-VCH, Weinheim, 2008).Google Scholar
  2. 2.
    S. V. Eliseeva and J.-C. G. Bünzli, Chem. Soc. Rev. 39, 189 (2010).CrossRefGoogle Scholar
  3. 3.
    M. A. Katkova, A. G. Vitukhnovskii, and M. N. Bochkarev, Usp. Khim. 74, 1193 (2005).CrossRefGoogle Scholar
  4. 4.
    A. De Bettencourt-Dias, Dalton Trans., 2229 (2007).Google Scholar
  5. 5.
    A. V. Yakimanskii, M. Ya. Goikhman, I. V. Podeshvo, T. D. Anan’eva, T. N. Nekrasova, and R. Yu. Smyslov, Polym. Sci., Ser. A 54, 921 (2012).CrossRefGoogle Scholar
  6. 6.
    K. Binnemans, Chem. Rev. 109, 4283 (2009).CrossRefGoogle Scholar
  7. 7.
    R. Shunmugam and G. N. Tew, J. Polym. Sci., Part A: Polym. Chem. 43, 5831 (2005).CrossRefGoogle Scholar
  8. 8.
    A. Meyers, A. Kimyonok, and M. Weck, Macromolecules 38, 8671 (2005).CrossRefGoogle Scholar
  9. 9.
    N. S. Baek, Y. H. Kim, S.-G. Roh, B. K. Kwak, and H. K. Kim, Adv. Funct. Mater. 16, 1873, (2006).CrossRefGoogle Scholar
  10. 10.
    R. Pizzoferrato, T. Ziller, R. Paolesse, F. Mandoj, A. Micozzi, A. Ricci, and C. Lo Sterzo, Chem. Phys. Lett. 426, 124 (2006).CrossRefGoogle Scholar
  11. 11.
    R. Shunmugam and G. N. Tew, Polym. Adv. Technol. 18, 940 (2007).CrossRefGoogle Scholar
  12. 12.
    R. Shunmugam and G. N. Tew, Polym. Adv. Technol. 19, 596 (2008).CrossRefGoogle Scholar
  13. 13.
    S. Wen, X. Zhang, S. Hu, L. Zhang, and L. Liu, Polymer 50, 3269 (2009).CrossRefGoogle Scholar
  14. 14.
    J. Luo, C. Zhang, C. Yang, and M. Lu, Synth. Met. 162, 431 (2012).CrossRefGoogle Scholar
  15. 15.
    D. Zhao, W. Li, Z. Hong, C. Liang, D. Zhao, J. Peng, and X. Liu, Jpn. J. Appl. Phys., Part 2 38, L46 (1999).CrossRefGoogle Scholar
  16. 16.
    Advances in Spectroscopy for Lasers and Sensing (Springer, New York, 2006).Google Scholar
  17. 17.
    M. Yang, Q. Ling, M. Hiller, X. Fun, X. Liu, L. Wang, and W. Zhang, J. Polym. Sci., Part A: Polym. Chem. 38, 3405 (2000).CrossRefGoogle Scholar
  18. 18.
    Q. Ling, M. Yang, Z. Wu, X. Zhang, L. Wang, and W. Zhang, Polymer 42, 4605 (2001).CrossRefGoogle Scholar
  19. 19.
    M. J. Yang, Q. D. Ling, W. Q. Li, Y. Wang, R. G. Sun, Q. B. Zheng, and A. J. Epstein, Mater. Sci. Eng. B 85, 100 (2001).CrossRefGoogle Scholar
  20. 20.
    Q. Ling, M. Yang, W. Zhang, H. Lin, G. Yu, and F. Bai, Thin Solid Films 417, 127 (2002).CrossRefGoogle Scholar
  21. 21.
    T. Förster, Discuss. Faraday Soc. 27, 7 (1959).CrossRefGoogle Scholar
  22. 22.
    Q. D. Ling, Q. J. Cai, E. T. Kang, K. G. Neoh, F. R. Zhu, and W. Huang, J. Mater. Chem. 14, 2741 (2004).CrossRefGoogle Scholar
  23. 23.
    Z.-G. Zhang, J.-B. Yuan, H.-J. Tang, H. Tang, L.-N. Wang, and K.-L. Zhang, J. Polym. Sci., Part A: Polym. Chem. 47, 210 (2009).CrossRefGoogle Scholar
  24. 24.
    A. V. Rozhkov, L. N. Bochkarev, G. V. Basova, V. A. Il’ichev, and G. A. Abakumov, Izv. Ross. Akad. Nauk, Ser. Khim., No. 12, 2223 (2012).Google Scholar
  25. 25.
    X. Jiang, R. A. Register, K. A. Killeen, M. E. Thompson, F. Pschenitzka, T. R. Hebner, and J. C. Sturm, J. Appl. Phys. 91, 6717 (2002).CrossRefGoogle Scholar
  26. 26.
    M. Berggren, G. Gustafsson, O. Inganäs, M. R. Andersson, T. Hjertberg, and O. J. Wennerström, Appl. Phys. 76, 7530 (1994).CrossRefGoogle Scholar
  27. 27.
    G. Giro, M. Cocchi, J. Kalinowski, P. D. Marco, and V. Fattori, Chem. Phys. Lett. 318, 137 (2000).CrossRefGoogle Scholar
  28. 28.
    J. Kalinowski, M. Cocchi, P. D. Marco, W. Stampor, G. Giro, and V. Fattori, J. Phys. D: Appl. Phys. 33, 2379 (2000).CrossRefGoogle Scholar
  29. 29.
    Organic Light-Emitting Diodes. Principles, Characteristics, and Processes (Marcel Dekker, New York, 2005).Google Scholar
  30. 30.
    L. Huang, K.-Z. Wang, C.-H. Huang, D.-Q. Gao, and L.-P. Jin, Synth. Met. 128, 241 (2002).CrossRefGoogle Scholar
  31. 31.
    A. V. Yakimanskii, M. Ya. Goikhman, I. V. Podeshvo, T.D. Anan’eva, R. Yu. Smyslov, T. N. Nekrasova, N. L. Loretsyan, V. A. Il’ichev, and A. N. Konev, Opt. Zh. 78(7), 17 (2011).Google Scholar
  32. 32.
    C. Yang, J. Xu, Y. Li, L. Yinwen, J. Zheng, L. Liang, and M. Lu, J. Mater. Chem. 1, 4885 (2013).CrossRefGoogle Scholar
  33. 33.
    H. Xu, R. Zhu, P. Zhao, L.-H. Xie, and W. Huang, Polymer 52, 804 (2011).CrossRefGoogle Scholar
  34. 34.
    H. Xu, R. Zhu, P. Zhao, and W. Huang, J. Phys. Chem. C 115, 15627 (2011).CrossRefGoogle Scholar
  35. 35.
    H. Cao, X. Gao, and C.-H. Huang, Appl. Surf. Sci. 161, 443 (2000).CrossRefGoogle Scholar
  36. 36.
    J. Pei, X.-L. Liu, W.-L. Yu, Y.-H. Lai, Y. H. Niu, and Y. Cao, Macromolecules 35, 7274 (2002).CrossRefGoogle Scholar
  37. 37.
    D. A. Turchetti, P. C. Rodriguez, L. S. Berlim, C. Zanlorenzi, G. C. Faria, T. D. Z. Atvars, W. H. Schreiner, and L. C. Akcelrud, Synth. Met. 162, 35 (2012).CrossRefGoogle Scholar
  38. 38.
    M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis, and J. Kankare, J. Lumin. 75, 149 (1997).CrossRefGoogle Scholar
  39. 39.
    L. Zeng, M. Yang, P. Wu, H. Ye, and X. Liu, Synth. Met. 144, 259 (2004).CrossRefGoogle Scholar
  40. 40.
    M. J. Yang, L. C. Zeng, and Q. H. Zhang, J. Mater. Sci. 39, 1407 (2004).CrossRefGoogle Scholar
  41. 41.
    L. N. Bochkarev, A. V. Safronova, and G. V. Basova, Russ. J. Gen. Chem. 80, 695 (2010).CrossRefGoogle Scholar
  42. 42.
    A. V. Rozhkov, L. N. Bochkarev, G. V. Basova, I. P. Malysheva, Yu. I. Begantsova, E. O. Platonova, E. V. Baranov, Yu. A. Kurskii, V. A. Il’ichev, M. A. Lopatin, G. A. Abakumov, and M. N. Bochkarev, Russ. J. Gen. Chem. 82, 1895 (2012).CrossRefGoogle Scholar
  43. 43.
    M. Guan, Z. Q. Bian, F. Y. Li, H. Xin, and C. H. Huang, New J. Chem. 27, 1731 (2003).CrossRefGoogle Scholar
  44. 44.
    H. Xin, M. Shi, X. M. Zhang, F. Y. Li, Z. Q. Bian, K. Ibrahim, F. Q. Liu, and C. H. Huang, Chem. Mater. 15, 3728 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • L. N. Bochkarev
    • 1
  • A. V. Rozhkov
    • 1
  • M. N. Bochkarev
    • 1
  1. 1.Razuvaev Institute of Organometallic ChemistryRussian Academy of SciencesNizhni NovgorodRussia

Personalised recommendations