Skip to main content
Log in

Atomistic simulations of cavitation in a model polyethylene network

  • Published:
Polymer Science Series C Aims and scope Submit manuscript

Abstract

A molecular-level understanding of cavitation in polymer networks upon imposition of mechanical stress is still lacking. Molecular Dynamics simulations of crosslinked amorphous Polyethylene (PE) were conducted in order to study cavitation as a function of the prevailing stress. We first show that the characteristic relaxation times related to tube confinement and chain connectivity can be obtained by examining the mean square displacement of middle chain monomers. Then, we present a methodology for predicting the cavitation strength and understanding its dependence on cohesive interactions and entropic elasticity. Our simulations show that experimental observations and predictions of continuum mechanics analysis, which relate the critical stress for cavitation to the Young’s modulus of the rubber, are in agreement with the observed tensile triaxial stress below which a pre-existing cavity cannot survive in a cavitated sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Gent, Int. J. Non-Linear Mech. 40, 165 (2005).

    Article  Google Scholar 

  2. K. R. Brown and C. Creton, Eur. Phys. J. E 9, 35 (2002).

    CAS  Google Scholar 

  3. P. Debenedetti and Reiss, J. Chem. Phys. 108, 5498 (1998).

    Article  CAS  Google Scholar 

  4. T. T. Bazhirov, G. E. Norman, and V. V. Stegailov, Dokl. Phys. 50, 570 (2005).

    Article  CAS  Google Scholar 

  5. T. T. Bazhirov, G. E. Norman, and V. V. Stegailov, J. Phys.: Condens. Matter 20, 114113 (2008).

    Article  CAS  Google Scholar 

  6. I. C. Sanchez and R. H. Lacombe, J. Phys. Chem. 80, 2352 (1976).

    Article  CAS  Google Scholar 

  7. A. N. Gent and P. B. Lindley, Proc. R. Soc. London A, Math. Phys. Sci. 249, 195 (1959).

    Article  Google Scholar 

  8. A. N. Gent and D. A. Tompkins, J. Appl. Phys. 40, 2520 (1969).

    Article  CAS  Google Scholar 

  9. J. A. Zimberlin, N. Sanabria-Delong, G. N. Tew, and A. J. Crosby, Soft Matter 3, 763 (2007).

    Article  CAS  Google Scholar 

  10. C. Fond, J. Polym. Sci., Part B: Polym. Phys. 39, 2081 (2001).

    Article  CAS  Google Scholar 

  11. A. Cristiano, A. Marcellan, R. Long, C. Y. Hui, J. Stolk, and C. Creton, J. Polym. Sci., Part B: Polym. Phys. 48, 1409 (2010).

    Article  CAS  Google Scholar 

  12. A. Cristiano, A. Marcellan, B. J. Keestra, P. Steeman, and C. Creton, J. Polym. Sci., Part B: Polym. Phys. 49, 355 (2011).

    Article  CAS  Google Scholar 

  13. O. Lopez-Pamies, M. I. Idiart, and T. Nakamura, J. Mech. Phys. Solids 59, 1464 (2011).

    Article  Google Scholar 

  14. M. G. Martin and J. I. Siepmann, J. Phys. Chem. B 102, 2569 (1998).

    Article  CAS  Google Scholar 

  15. S. Plimpton, J. Comput. Phys. 117, 1 (1995); http://lammps.sandia.gov

    Article  CAS  Google Scholar 

  16. N. C. Karayiannis, A. E. Giannousaki, V. G. Mavrantzas, and D. N. Theodorou, J. Chem. Phys. 117, 5465 (2002).

    Article  CAS  Google Scholar 

  17. R. Auhl, R. Everaers, G. S. Grest, K. Kremer, and S. J. Plimpton, J. Chem. Phys. 119, 12718 (2003).

    Article  CAS  Google Scholar 

  18. C. Tzoumanekas and D. N. Theodorou, Macromolecules 39, 4592 (2006).

    Article  CAS  Google Scholar 

  19. P. G. De Gennes, J. Chem. Phys. 55, 572 (1971).

    Article  Google Scholar 

  20. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1986).

    Google Scholar 

  21. W. W. Graessley and S. F. Edwards, Polymer 22, 1329 (1981).

    Article  CAS  Google Scholar 

  22. A. K. Morozinis, C. Tzoumanekas, and D. N. Theodorou (in preparation).

  23. R. Everaers, New J. Phys. 1, 12.1 (1999).

    Article  Google Scholar 

  24. S. F. Edwards, H. Takano, and E. M. Terentjev, J. Chem. Phys. 113, 5531 (2000).

    Article  CAS  Google Scholar 

  25. B. Mergell and R. Everaers, Macromolecules 34, 5675 (2001).

    Article  CAS  Google Scholar 

  26. M. Rubinstein and S. Panyukov, Macromolecules 35, 6670 (2002).

    Article  CAS  Google Scholar 

  27. Z. Wang, A. E. Likhtman, and R. G. Larson, Macromolecules 45, 3557 (2012).

    Article  CAS  Google Scholar 

  28. J. Ramos, J. F. Vega, D. N. Theodorou, and J. Martinez-Salazar, Macromolecules 41, 2959 (2008).

    Article  CAS  Google Scholar 

  29. J. M. Adams, Y. Mao, W. L. Vandoolaeghe, J. Chem. Phys. 127, 114907 (2007).

    Article  CAS  Google Scholar 

  30. P. A. Rodgers, J. Appl. Polym. Sci. 48, 1061 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Tzoumanekas.

Additional information

The article is published in original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morozinis, A.K., Tzoumanekas, C., Anogiannakis, S.D. et al. Atomistic simulations of cavitation in a model polyethylene network. Polym. Sci. Ser. C 55, 212–218 (2013). https://doi.org/10.1134/S1811238213050020

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238213050020

Keywords

Navigation