Advertisement

Polymer Science Series C

, Volume 51, Issue 1, pp 63–73 | Cite as

Synthesis and characteristics of the composites based on poly(caproamide) and multiwalled carbon nanotubes

  • Ya. S. Vygodskii
  • T. V. Volkova
  • O. N. Zabegaeva
  • Z. Yu. Chistyakova
  • V. A. Shanditsev
  • M. I. Buzin
  • Ya. V. Zubavichus
  • O. V. Sinitsyna
  • G. G. Nikiforova
  • A. P. Krasnov
  • I. A. Garbuzova
  • E. M. Belavtseva
Article

Abstract

Polycaproamide composites are synthesized by the anionic activated bulk polymerization of ɛ-caprolactam in the presence of 0.1–5.0 wt % of multiwalled carbon nanotubes and using low-molecularmass monofunctional (N-acetyl-ɛ-caprolactam) and macromolecular polyfunctional (aromatic polyimides) activating agents. The effect of nanotubes on the polymerization of ɛ-caprolactam is studied, and this effect is shown to become more pronounced as the concentration of nanotubes is increased. The effect of nanotubes on the microstructure, phase composition, water sorption, thermophysical, mechanical, and friction characteristics of poly(caproamide) is analyzed.

Keywords

Carbon Nanotubes Polymer Science Series Impact Toughness Dynamic Mechanical Analysis Multiwalled Carbon Nanotubes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. G. Rakov, Usp. Khim. 70, 934 (2001).Google Scholar
  2. 2.
    M. Moniruzzaman and K. I. Winey, Macromolecules 39, 5194 (2006).CrossRefGoogle Scholar
  3. 3.
    W. D. Zhang, L. Shen, I. Y. Phang, and T. Liu, Macromolecules 37, 256 (2004).CrossRefGoogle Scholar
  4. 4.
    O. Meincke, D. Kaempfer, H. Weickman, et al., Polymer 45, 739 (2004).CrossRefGoogle Scholar
  5. 5.
    H. Xia, Q. Wang, and G. Qiu, Chem. Mater. 15, 3879 (2003).CrossRefGoogle Scholar
  6. 6.
    G.-X. Chen, H.-S. Kim, B. H. Park, and J.-S. Yoon, Polymer 47, 4760 (2006).CrossRefGoogle Scholar
  7. 7.
    C. Zhao, G. Hu, R. Justice, et al., Polymer 46, 5125 (2005).CrossRefGoogle Scholar
  8. 8.
    J. Gao, M. E. Itkis, A. Yu, et al., J. Am. Chem. Soc. 127, 3847 (2005).CrossRefGoogle Scholar
  9. 9.
    K. Saeed and S.-J. Park, J. Appl. Polym. Sci. 106, 3729 (2007).CrossRefGoogle Scholar
  10. 10.
    M. Terrones, Annu. Rev. Mater. Res. 33, 419 (2003).CrossRefGoogle Scholar
  11. 11.
    Y. Sun, S. R. Wilson, and D. I. Shuster, J. Am. Chem. Soc. 123, 5348 (2001).CrossRefGoogle Scholar
  12. 12.
    K. D. Ausman, R. Piner, O. Lourie, et al., J. Phys. Chem., B 104, 8911 (2000).CrossRefGoogle Scholar
  13. 13.
    L. A. Smirnova, Yu. D. Semchikov, N. A. Andriyanova, et al., Polymer Science, Ser. B 45, 216 (2003) [Vysokomol. Soedin., Ser. B 45, 1359 (2003)].Google Scholar
  14. 14.
    K. H. Illers and H. Haberkorn, Makromol. Chem. 14, 31 (1971).CrossRefGoogle Scholar
  15. 15.
    Q. Fu, B. P. Livengood, C.-C. Shen, et al., Macromol. Chem. Phys. 199, 1107 (1998).CrossRefGoogle Scholar
  16. 16.
    T. Lin, I. Y. Fani, L. Shen, et al., Macromolecules 37, 7214 (2004).CrossRefGoogle Scholar
  17. 17.
    V. Brucatto, G. Grippa, S. Piccarolo, and G. Titomanlio, Polym. Eng. Sci. 31, 1411 (1991).CrossRefGoogle Scholar
  18. 18.
    Y. P. Khanna and W. P. Kuhn, J. Polym. Sci., Part B: Polym. Phys. 35, 2219 (1997).CrossRefGoogle Scholar
  19. 19.
    K. Kelar and B. Jurowski, J. Appl. Polym. Sci. 104, 3010 (2007).CrossRefGoogle Scholar
  20. 20.
    A. V. Chichinadze, Polymers in Friction Junctions of Machines and Instruments (Mashinostroenie, Moscow, 1988) [in Russian].Google Scholar
  21. 21.
    B. M. Ginzburg, A. O. Pozdnyakov, D. G. Tochil’nikov, et al., Polymer Science, Ser. A 50, 865 (2008) [Vysokomol. Soedin., Ser. A 50, 1483 (2008)].CrossRefGoogle Scholar
  22. 22.
    Handbook on Polymer Chemistry (Naukova Dumka, Kiev, 1971) [in Russian].Google Scholar
  23. 23.
    L. I. Zakharkin, T. M. Frunze, V. V. Gavrilenko, et al., USSR Inventor’s Certificate No. 1 641 824, Byull. Izobret., No. 14 (1991).Google Scholar
  24. 24.
    R. Benson and T. Cairns, J. Am. Chem. Soc. 70, 2115 (1948).CrossRefGoogle Scholar
  25. 25.
    S. V. Vinogradova and Ya. S. Vygodskii, Usp. Khim. 42, 1225 (1973).Google Scholar
  26. 26.
    Ya. S. Vygodskii, T. V. Volkova, T. L. Batalova, et al., Polymer Science, Ser. A 47, 645 (2005) [Vysokomol. Soedin., Ser. A 47, 1077 (2005)].Google Scholar
  27. 27.
    P. Wittmer and H. Gerrens, Makromol. Chem. 89, 27 (1965).CrossRefGoogle Scholar
  28. 28.
    Ya. S. Vygodskii, A. P. Krasnov, L. S. Fedorova, et al., Polymer Science, Ser. A 41, 69 (1999) [Vysokomol. Soedin., Ser. A 41, 74 (1999)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • Ya. S. Vygodskii
    • 1
  • T. V. Volkova
    • 1
  • O. N. Zabegaeva
    • 2
  • Z. Yu. Chistyakova
    • 1
  • V. A. Shanditsev
    • 1
  • M. I. Buzin
    • 1
  • Ya. V. Zubavichus
    • 1
  • O. V. Sinitsyna
    • 1
  • G. G. Nikiforova
    • 1
  • A. P. Krasnov
    • 1
  • I. A. Garbuzova
    • 1
  • E. M. Belavtseva
    • 1
  1. 1.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  2. 2.Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations