Advertisement

Polymer Science Series C

, Volume 51, Issue 1, pp 8–11 | Cite as

New polybenzimidazoles for producing medium-temperature proton-exchange membranes

  • A. Yu. Leikin
  • A. L. Rusanov
Article

Abstract

H3PO4-doped proton-exchange membranes based on benzimidazole-2-yl-substituted polybenzimidazoles have been obtained and studied. Attempts have been made to stabilize the mechanical properties of doped membranes by crosslinking of the initial polymers. The treatment with sulfuric acid is selected as the most efficient crosslinking method. Target characteristics (proton conductivity and performance in the fuel cell) of a membrane based on crosslinked benzimidazole-2-yl-substituted polybenzimidazole have been investigated. The proton conductivity of the membrane is estimated as 5.2 × 10−2 S/cm at 160°C. The current density in a hydrogen—air fuel cell based on the developed membrane is found to be 0.21 A/cm2 at 160°C, 0.6 V, with a total platinum content on electrodes of 1 mg/cm2.

Keywords

Polymer Science Series DMAA Membrane Electrode Assembly Urotropine Pyrophosphoric Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Yu. Leikin, E. G. Bulycheva, A. L. Rusanov, and D. Yu. Likhachev, Polymer Science, Ser. B 48, 144 (2006) [Vysokomol. Soedin., Ser. B 48, 1031 (2006)].CrossRefGoogle Scholar
  2. 2.
    Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, Chem. Mater. 15, 4896 (2003).CrossRefGoogle Scholar
  3. 3.
    F. Seland, T. Berning, B. Borresen, and R. Tunold, J. Power Sources 160, 27 (2006).CrossRefGoogle Scholar
  4. 4.
    V. V. Korshak, E. S. Krongauz, A. P. Travnikova, et al., Dokl. Akad. Nauk SSSR 196, 106 (1971).Google Scholar
  5. 5.
    V. V. Korshak, E. S. Krongauz, A. L. Rusanov, and A. P. Travnikova, Vysokomol. Soedin., Ser. A 16, 35 (1974).Google Scholar
  6. 6.
    V. V. Korshak, E. S. Krongauz, A. P. Travnikova, and A. L. Rusanov, Macromolecules 7, 589 (1974).CrossRefGoogle Scholar
  7. 7.
    A. Yu. Leikin, O. V. Okatova, N. N. Ul’yanova, et al., Polymer Science, Ser. B 51, 537 (2009).Google Scholar
  8. 8.
    X. Glipa, B. Bonnet, B. Mula, et al., J. Mater. Chem. 9, 3045 (1999).CrossRefGoogle Scholar
  9. 9.
    R. F. Jameson, J. Chem. Soc., 752 (1959).Google Scholar
  10. 10.
    J. A. Asensio, S. Borros, and P. Gomez-Romero, J. Polym. Sci., Part A: Polym. Chem. 40, 3703 (2002).CrossRefGoogle Scholar
  11. 11.
    C. S. Marvel, J. Macromol. Sci., A 1, 7 (1967).CrossRefGoogle Scholar
  12. 12.
    V. V. Korshak, P. F. Manucharova, A. A. Izyneev, and T.M. Frunze, Vysokomol. Soedin., Ser. A 8, 777 (1966).Google Scholar
  13. 13.
    W. Wrasidlo and R. Empy, J. Polym. Sci., Part A-1 1, 1513 (1967).CrossRefGoogle Scholar
  14. 14.
    J. Kuder and J. C. Chen, US Patent No. 4634530 (1987).Google Scholar
  15. 15.
    V. V. Rode, A. L. Rusanov, V. V. Korshak, and N. M. Kotsoeva, Izv. Akad. Nauk SSSR, Ser. Khim., No. 11, 2662 (1968).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Engineering Center of Hydrogen Technologies and Alternative EnergeticsNational Innovation Company New Energy ProjectsMoscowRussia
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations