Polymer Science Series C

, Volume 50, Issue 1, pp 93–121 | Cite as

Specifics of structural transformations in poly(vinylidene fluoride)-based ferroelectric polymers in high electric fields

Article

Abstract

The behavior of polymorphic transformations in the solid phase under the action of strong electric fields in crystallizable ferroelectric polymers based on PVDF was analyzed. The occurrence of two transitions, α → α p and α → β, was revealed by means of IR spectroscopy in homopolymer films crystallized as a mixture of the nonpolar α phase and the polar β phase. If such films were crystallized into the ferroelectric β phase, the action of the field reduced to the processes of reorientation of chain segments in the all-trans (planar zigzag) conformation. Reversible and irreversible changes in the crystallinity are possible in this case. A shift in the frequency of some skeletal-vibration bands indicates a change in the mechanical stress on atomic bonds. For vinylidene fluoride copolymers in polar crystals, the field can initiate molecular rearrangements, which lead to an increase in the interchain density of chain packing in the lattice. It was assumed that the delayed kinetics of field-induced solid-state transformations is controlled by two factors. On the one hand, the nucleation of the new phase follows the fluctuation mechanism of appearance of conformation defects of the kink-link type in the initial crystal. An important role is played in such processes by the dynamics of amorphous-phase tie chains bordering the crystals, when a decrease in their activation energy in micro-Brownian motion processes increases the probability of a conformational defect appearing in the crystal. On the other hand, the role of space charge (including the charge due to carrier injection from the electrode metal) in the formation of a local electric field is substantial. Allowance for both factors may provide a qualitative explanation of the specifics of the kinetics of these structural transformations in an electric field.

Keywords

Dipole Moment PVDF Amorphous Phase Polymer Science Series Structural Transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Bauer, J. Appl. Phys. 80, 5531 (1996).CrossRefGoogle Scholar
  2. 2.
    C. H. Wang, H. W. Guan, and S. H. Gu, J. Non Cryst. Solids 172–174, 705 (1994).CrossRefGoogle Scholar
  3. 3.
    M. A. Firestone, M. A. Ratner, and T. J. Marks, Macromolecules 28, 6296 (1995).CrossRefGoogle Scholar
  4. 4.
    M. A. Pauley, C. H. Wang, and A. K.-J. Jen, Macromolecules 29, 7064 (1996).CrossRefGoogle Scholar
  5. 5.
    X. L. Jiang, L. Li, J. Kumar, and S. K. Tripathy, Appl. Phys. Lett. 69, 3629 (1996).CrossRefGoogle Scholar
  6. 6.
    A. V. Vannikov, A. D. Grishina, R. V. Rikhval’skii, and A. T. Ponomarenko, Usp. Khim. 67, 507 (1997).Google Scholar
  7. 7.
    S. Saal and W. Haase, Chem. Phys. Lett. 278, 127 (1997).CrossRefGoogle Scholar
  8. 8.
    N. Tirelli, U. W. Suter, A. Altomare, et al., Macromolecules 31, 2152 (1998).CrossRefGoogle Scholar
  9. 9.
    R. D. Dureiko, D. E. Schuele, and K. D. Singer, J. Opt. Soc. Am. B 15, 338 (1998).CrossRefGoogle Scholar
  10. 10.
    J. A. Joung, B. L. Farmer, and J. A. Hinkley, Polymer 40, 2787 (1999).CrossRefGoogle Scholar
  11. 11.
    P. M. Borsenberger, W. T. Gruenbaum, E. H. Magin, et al., J. Polym. Sci., Part B: Polym. Phys. 37, 349 (1999).CrossRefGoogle Scholar
  12. 12.
    C. Zhang, C. Wang, J. Yang, et al., Macromolecules 34, 235 (2001).CrossRefGoogle Scholar
  13. 13.
    G. Knabke and H. Franke, Appl. Phys. Lett. 58, 678 (1991).CrossRefGoogle Scholar
  14. 14.
    H. Kawai, Jpn. J. Appl. Phys. 8, 975 (1969).CrossRefGoogle Scholar
  15. 15.
    T. Furukawa, M. Date, K. Nakajima, et al., Jpn. J. Appl. Phys. 25, 1178 (1986).CrossRefGoogle Scholar
  16. 16.
    S. Tasaka, N. Inagaki, N. Okutani, and S. Miyata, Polymer 30, 1639 (1989).CrossRefGoogle Scholar
  17. 17.
    D. Zou, S. Iwasaki, T. Tsutsui, et al., Polymer 31, 1888 (1990).CrossRefGoogle Scholar
  18. 18.
    Y. Ohta, R. Chujo, and M. Kishimoto, Polymer 31, 1581 (1990).CrossRefGoogle Scholar
  19. 19.
    Y. Inoue, Y. Murayama, M. Sakarai, et al., Polymer 31, 1594 (1990).CrossRefGoogle Scholar
  20. 20.
    Y. Inoue, Y. Murayama, M. Sakarai, et al., Polymer 31, 850 (1990).CrossRefGoogle Scholar
  21. 21.
    S. C. Mathur, B. A. Newman, and J. I. Scheinbeim, J. Polym. Sci., Part B: Polym. Phys. 26, 447 (1988).CrossRefGoogle Scholar
  22. 22.
    B. A. Newman and J. I. Scheinbeim, J. Mater. Sci. 25, 1779 (1990).CrossRefGoogle Scholar
  23. 23.
    J. I. Scheinbeim, J. W. Lee, and B. A. Newman, Macromolecules 25, 3729 (1992).CrossRefGoogle Scholar
  24. 24.
    Von Berlepsch, W. Kunstler, A. Wedel, et al., IEEE Trans. Electr. Insul. 24, 357 (1989).CrossRefGoogle Scholar
  25. 25.
    Y. Takahashi, S. Ukashima, M. Ijima, and E. Fukada, J. Appl. Phys. 70, 6983 (1991).CrossRefGoogle Scholar
  26. 26.
    S. Tasaka, T. Shouko, and N. Inugaki, Jpn. J. Appl. Phys., Part 2 3, L1086 (1992).Google Scholar
  27. 27.
    J. Su, Q. M. Fhang, C. H. Kim, et al., J. Appl. Polym. Sci. 65, 1363 (1997).CrossRefGoogle Scholar
  28. 28.
    Y. Tajitsu, K. Ishida, S. Kanbara, et al., Jpn. J. Appl. Phys. 37, 5375 (1998).CrossRefGoogle Scholar
  29. 29.
    N. Tsutsumi, Y. Okabe, and W. Sakai, Macromolecules 32, 3249 (1999).CrossRefGoogle Scholar
  30. 30.
    E. Fukada, Jpn. J. Appl. Phys. 37, 2775 (1998).CrossRefGoogle Scholar
  31. 31.
    V. V. Kochervinskii, Usp. Khim. 62, 383 (1994).Google Scholar
  32. 32.
    J. X. Wen, Polym. J. (Tokyo) 17, 399 (1985).Google Scholar
  33. 33.
    V. V. Kochervinskii, Kristallografiya 48, 699 (2003).Google Scholar
  34. 34.
    J. W. Day, C. A. Hamilton, R. L. Peterson, et al., Appl. Phys. Lett. 24, 456 (1974).CrossRefGoogle Scholar
  35. 35.
    F. Bauer, Ferroelectrics 49, 231 (1983).Google Scholar
  36. 36.
    J. A. Giacometti, S. Fedosov, and M. M. Costa, Braz. J. Phys. 29, 269 (1999).CrossRefGoogle Scholar
  37. 37.
    A. G. Kravtsov and H. Brunig, Polymer Science, Ser. B 42, 163 (2000) [Vysokomol. Soedin., Ser. B 42, 1074 (2000)].Google Scholar
  38. 38.
    T. Fukada, H. Matsuda, T. Kimura, et al., Polym. Adv. Technol. 11, 583 (2000).CrossRefGoogle Scholar
  39. 39.
    C. K. Ong, Z. G. Song, and H. Gong, J. Phys.: Condens. Matter 9, 9289 (1997).CrossRefGoogle Scholar
  40. 40.
    G. M. Sessler and G. M. Yang, Braz. J. Phys. 29, 233 (1999).Google Scholar
  41. 41.
    J. Ide, S. Tasaka, and N. Inagaki, Jpn. J. Appl. Phys. 38, 2049 (1999).CrossRefGoogle Scholar
  42. 42.
    V. V. Kochervinskii, Usp. Khim. 65, 936 (1996).Google Scholar
  43. 43.
    V. V. Kochervinskii, Crystallogr. Rep., Suppl. 1, 51(6), S88 (2006).CrossRefGoogle Scholar
  44. 44.
    N. C. Banic, P. L. Taylor, and A. J. Hopfinger, Appl. Phys. Lett. 37, 49 (1980).CrossRefGoogle Scholar
  45. 45.
    A. Buchtemann, W. Stark, and D. Geiss, Acta Polym. 39, 171 (1988).CrossRefGoogle Scholar
  46. 46.
    A. Buchtemann and D. Geiss, Polymer 32, 215 (1991).CrossRefGoogle Scholar
  47. 47.
    A. Buchtemann, I. Muller, and W. Stark, Acta Polym. 43, 1 (1992).CrossRefGoogle Scholar
  48. 48.
    A. Buchtemann, W. Stark, and W. Kunstler, Vibr. Spectrosc. 4, 231 (1993).CrossRefGoogle Scholar
  49. 49.
    T. Takahashi, M. Date, and E. Fukada, Ferroelectrics 32, 73 (1981).Google Scholar
  50. 50.
    R. D. Southgate, Appl. Phys. Lett. 28, 250 (1976).CrossRefGoogle Scholar
  51. 51.
    D. Naegele and D. Y. Yoon, Appl. Phys. Lett. 33, 132 (1978).CrossRefGoogle Scholar
  52. 52.
    D. A. Jarvis, I. J. Hutchinson, D. I. Bower, and I. M. Ward, Polymer 21, 41 (1980).CrossRefGoogle Scholar
  53. 53.
    V. V. Kochervinskii, Usp. Khim. 68, 821 (1999).Google Scholar
  54. 54.
    K. Takahashi, H. Lee, R. E. Salomon, and M. M. Labes, J. Appl. Phys. 48, 4694 (1977).CrossRefGoogle Scholar
  55. 55.
    D. Geiss and C. Ruscher, Prog. Colloid Polym. Sci. 80, 119 (1989).CrossRefGoogle Scholar
  56. 56.
    Q. N. Zhang, V. Bharti, and X. Zhao, Science (Washington, D. C.) 280, 2101 (1998).CrossRefGoogle Scholar
  57. 57.
    F. J. Lu and S. L. Hsu, Polymer 25, 1247 (1984).CrossRefGoogle Scholar
  58. 58.
    S. N. Zhurkov, V. I. Vettegren’, V. I. Korsukov, and I. I. Novak, Fiz. Tverd. Tela (Leningrad) 11, 290 (1969).Google Scholar
  59. 59.
    V. I. Vettegren’ and A. A. Kusov, Fiz. Tverd. Tela (Leningrad) 24, 1598 (1982).Google Scholar
  60. 60.
    V. I. Vettegren’, Fiz. Tverd. Tela (Leningrad) 26, 1699 (1984).Google Scholar
  61. 61.
    A. E. Gal’, V. I. Vettegren’, and K. E. Perepelkin, Vysokomol. Soedin., Ser. B 27, 615 (1985).Google Scholar
  62. 62.
    R. P. Wool and R. H. Boyd, J. Appl. Phys. 51, 5116 (1980).CrossRefGoogle Scholar
  63. 63.
    R. P. Wool, J. Polym. Sci., Part B: Polym. Phys. 19, 449 (1981).Google Scholar
  64. 64.
    R. S. Bretzlaff and R. P. Wool, Macromolecules 16, 1907 (1983).CrossRefGoogle Scholar
  65. 65.
    L. J. Fina, D. J. Bower, and I. M. Ward, Polymer 29, 2136 (1988).CrossRefGoogle Scholar
  66. 66.
    B. J. Kip, C. P. Van Eijk, and R. J. Meier, J. Polym. Sci., Part B: Polym. Phys. 29, 99 (1991).CrossRefGoogle Scholar
  67. 67.
    R. A. Ingemey, G. Strohe, and W. S. Veeman, Appl. Spectrosc. 50, 1360 (1996).CrossRefGoogle Scholar
  68. 68.
    Y. Takahashi, Jpn. J. Appl. Phys., Part 1 33, 202 (1994).CrossRefGoogle Scholar
  69. 69.
    M. G. Broadhurst and G. T. Davis, Ferroelectrics 32, 177 (1981).CrossRefGoogle Scholar
  70. 70.
    W. P. Mason, Phys. Rev. 72, 854 (1947).CrossRefGoogle Scholar
  71. 71.
    R. J. Kepler and R. A. Anderson, J. Appl. Phys. 49, 1232 (1978).CrossRefGoogle Scholar
  72. 72.
    V. V. Kochervinskii, Polymer Science, Ser. A 42, 1077 (2000) [Vysokomol. Soedin., Ser. A 42, 1669 (2000)].Google Scholar
  73. 73.
    N. D. Gavrilova, V. V. Kochervinskii, I. P. Malyshkina, et al., Polymer Science, Ser. A 41, 954 (1999) [Vysokomol. Soedin., Ser. A 41, 1473 (1999)].Google Scholar
  74. 74.
    V. V. Kochervinskii, Polymer Science, Ser. A 44, 20 (2002) [Vysokomol. Soedin., Ser. A 44, 27 (2002)].Google Scholar
  75. 75.
    S. Tasaka and S. Miyata, J. Appl. Phys. 57, 906 (1985).CrossRefGoogle Scholar
  76. 76.
    H. Dvey-Aharon, T. J. Sluckin, P. L. Taylor, and A. J. Hopfmger Phys. Rev. B: Condens. Matter 21, 3700 (1980).Google Scholar
  77. 77.
    J. D. Clark, P. L. Taylor, and A. J. Hopfmger, J. Appl. Phys. 52, 5903 (1981).CrossRefGoogle Scholar
  78. 78.
    J. D. Clark and P. L. Taylor, Phys. Rev. Lett. 49, 1532 (1982).CrossRefGoogle Scholar
  79. 79.
    V. V. Kochervinskii, Polymer Science, Ser. C 48, 38 (2006) [Vysokomol. Soedin., Ser. C 48, 1263 (2006)].CrossRefGoogle Scholar
  80. 80.
    T. Furukawa and G. E. Johnson, Appl. Phys. Lett. 38, 1027 (1981).CrossRefGoogle Scholar
  81. 81.
    T. Furukawa, M. Date, and G. E. Johnson, J. Appl. Phys. 54, 1540 (1983).CrossRefGoogle Scholar
  82. 82.
    K. Matsushige, S. Imada, and T. Takemura, Polym. J. (Tokyo) 13, 493 (1981).Google Scholar
  83. 83.
    H. L. W. Chan, Z. Zhao, K. W. Kwok, et al., J. Appl. Phys. 65, 541 (1989).CrossRefGoogle Scholar
  84. 84.
    A. J. Lovinger, D. D. Davis, R. E. Cais, and J. M. Kometani, Macromolecules 21, 78 (1988).CrossRefGoogle Scholar
  85. 85.
    J. B. Lando and W. W. Doll, J. Macromol. Sci., Phys. 2, 205 (1968).CrossRefGoogle Scholar
  86. 86.
    V. V. Kochervinskii, S. N. Sulyanov, and K. A. Dembo, J. Appl. Polym. Sci. (in press).Google Scholar
  87. 87.
    K. Koga, N. Nakano, T. Hattori, and H. Ohigashi, J. Appl. Phys. 67, 965 (1990).CrossRefGoogle Scholar
  88. 88.
    D. L. Winsor, J. I. Scheinbeim, and B. A. Newman, J. Polym. Sci., Part B: Polym. Phys. 37, 29 (1999).CrossRefGoogle Scholar
  89. 89.
    Y. Murata, Polym. J. (Tokyo) 19, 337 (1987).Google Scholar
  90. 90.
    V. V. Kochervinskii, V. V. Volkov, and K. A. Dembo, Fiz. Tverd. Tela (St. Petersburg) 48, 1019 (2006).Google Scholar
  91. 91.
    M. A. Doverspike, M. S. Conradi, A. S. DeReggi, and R. E. Cais, J. Appl. Phys. 65, 541 (1989).CrossRefGoogle Scholar
  92. 92.
    S. L. Hsu, F. J. Lu, A. Waldman, and M. Mathukumar, Macromolecules 18, 2583 (1985).CrossRefGoogle Scholar
  93. 93.
    F. J. Lu and S. L. Hsu, Macromolecules 19, 326 (1986).CrossRefGoogle Scholar
  94. 94.
    H. L. Marand, R. S. Stein, and G. M. Stack, J. Polym. Sci., Part B: Polym. Phys. 26, 1361 (1988).CrossRefGoogle Scholar
  95. 95.
    H. L. Marand and R. S. Stein, J. Polym. Sci., Part B: Polym. Phys. 27, 1089 (1989).CrossRefGoogle Scholar
  96. 96.
    P. Sajkiewicz, J. Polym. Sci., Part B: Polym. Phys. 32, 313 (1994).CrossRefGoogle Scholar
  97. 97.
    R. S. Stein and M. B. Rhodes, J. Appl. Phys. 31, 1873 (1960).CrossRefGoogle Scholar
  98. 98.
    V. V. Kochervinskii, T. E. Danilyuk, and L. Ya. Madorskaya, Vysokomol. Soedin., Ser. A 28, 619 (1986).Google Scholar
  99. 99.
    D. T. Grubb, P. Cebe, and K. W. Choi, Ferroelectrics 57, 121 (1984).Google Scholar
  100. 100.
    T. T. Wang and J. E. West, J. Appl. Phys. 53, 6552 (1982).CrossRefGoogle Scholar
  101. 101.
    V. V. Kochervinskii, Polymer Science, Ser. A 35, 1674 (1993) [Vysokomol. Soedin., Ser. A 35, 1978 (1993)].Google Scholar
  102. 102.
    Y. Takahashi, Y. Nakagawa, H. Miyaji, and K. Asai, J. Polym. Sci., Part C: Polym. Lett. 25, 153 (1987).CrossRefGoogle Scholar
  103. 103.
    J. I. Scheinbeim, B. A. Newman, and A. Sen, Macromolecules 19, 1454 (1986).CrossRefGoogle Scholar
  104. 104.
    P. S. Dai, P. Cebe, M. Capel, et al., Macromolecules 36, 4042 (2003).CrossRefGoogle Scholar
  105. 105.
    M. C. Christie, J. I. Scheinbeim, and B. A. Newman, J. Polym. Sci., Part B: Polym. Phys. 35, 2671 (1997).CrossRefGoogle Scholar
  106. 106.
    M. Suzuki, T. Nakanishi, and H. Ohigashi, Rep. Prog. Polym. Phys. Jpn. 25, 505 (1982).Google Scholar
  107. 107.
    G. T. Davis, M. G. Broadhurst, A. J. Lovinger, and T. Furukawa, Ferroelectrics 57, 73 (1984).Google Scholar
  108. 108.
    H. Arisawa, O. Yano, and Y. Wada, Ferroelectrics 32, 39 (1981).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Karpov Institute of Physical ChemistryMoscowRussia

Personalised recommendations