Polymer Science Series C

, Volume 48, Issue 1, pp 21–37 | Cite as

Flow instability in polymer solutions and melts

  • A. Ya. Malkin
Article

Abstract

The existing experimental data concerning the problem of flow instability in polymer solutions and melts is considered and critically discussed. The instability is understood as both regular distortions of the jet surface shape and turbulence of the flow as such. The visual manifestations and physical mechanisms determining the development of flow instability are analyzed and classified. The following principal forms of instability are distinguished: small-scale regular surface defects, periodic oscillations with the scale of the jet diameter, the slip—stick periodic transition phenomenon, self-oscillations of the stream, jet spurt, and large-scale distortions passing into stream discontinuities. In all cases, the instability of the jet is due to rubber elasticity of polymer fluids, a property which causes storage of elastic energy during deformation with its subsequent release in the form of stream distortions. Therefore, the general criterion for the onset of instability is a certain critical value of the Weissenberg number. The key factors determining the loss of the flow stability are concentration of stresses at the channel outlet, transition from laminar flow to slip along a solid wall (adhesive ruptures) under certain critical conditions, and mechanical fracture (cohesive ruptures) of a material. In the appearance of hysteresis oscillations, bulk elasticity and compressibility of the melt also play a certain role. Alternative mechanisms proposed in the literature are also discussed. Examples illustrating the possibility of suppressing jet distortions are given; this suppression is important for many industrial applications in polymer processing.

Keywords

Polymer Science Series Flow Instability Channel Outlet Deborah Number Weissenberg Number 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Reynolds, Philos. Trans. R. Soc. London 174, 935 (1883).Google Scholar
  2. 2.
    G. Lamb, Treatise on High Mathematical Theory of the Motion of Liquids (Oxford Univ. Press, Oxford, 1932; Gostekhizdat, Moscow, 1947).Google Scholar
  3. 3.
    G. I. Taylor, Philos. Trans. R. Soc. London, A 223, 289 (1923).Google Scholar
  4. 4.
    G. I. Taylor, Proc. R. Soc. London, A 151, 494 (1935).Google Scholar
  5. 5.
    H. K. Nason, J. Appl. Phys. 16, 338 (1945).Google Scholar
  6. 6.
    M. Mooney, J. Colloid Sci. 2, 69 (1947).Google Scholar
  7. 7.
    R. S. Spenser and R. E. Dillon, 4, 241 (1949).Google Scholar
  8. 8.
    J. P. Tordella, J. Appl. Phys. 27, 454 (1956).Google Scholar
  9. 9.
    P. L. Clegg, Rheology of Elastomeys, Ed. by P. Mason and N. Wookey (Pergamon, New York, 1957).Google Scholar
  10. 10.
    J. P. Tordella, SPE J. 12(2), 36 (1957).Google Scholar
  11. 11.
    P. L. Clegg, Plast. Inst. Trans. J. 26, 151 (1958).Google Scholar
  12. 12.
    E. B. Bagley and A. M. Birks, J. Appl. Phys. 31, 556 (1960).Google Scholar
  13. 13.
    E. B. Bagley and H. P. Schreiber, Trans. Soc. Rheol. 5, 341 (1961).Google Scholar
  14. 14.
    J. P. Tordella, J. Appl. Polym. Sci. 7, 215 (1963).Google Scholar
  15. 15.
    J. J. Banbow and P. Lamb, SPE Trans. 3, 7 (1963).Google Scholar
  16. 16.
    J. P. Tordella, J. Polym. Sci., Part C 15, 495 (1966).Google Scholar
  17. 17.
    G. V. Vinogradov and V. N. Manin, Kolloidn. Zh. 27, 784 (1965).Google Scholar
  18. 18.
    G. V. Vinogradov and V. N. Manin, Kolloid Z.Z. Polym. 201, 93 (1965).Google Scholar
  19. 19.
    J. P. Tordella, Rheology. Theory and Applications, Ed. by F. R. Eirich (Academic, New York, 1969), Vol. 5.Google Scholar
  20. 20.
    E. Miller and J. F. Rothstein, Rheol. Acta 44, 160 (2004).Google Scholar
  21. 21.
    M. Fernández, A. Santamaria, A. Muños-Escalona, and L. Mendez, J. Rheol. (N. Y.) 45, 595 (2001).Google Scholar
  22. 22.
    C. J. S. Petrie and M. M. Denn, AIChE J. 22, 209 (1976).Google Scholar
  23. 23.
    M. M. Denn, Annu. Rev. Fluid Mech. 22, 13 (1990).Google Scholar
  24. 24.
    J.-M. Piau, N. El Kissi, F. Toussaint, and A. Mezghani, Rheol. Acta 34, 40 (1995).Google Scholar
  25. 25.
    S.-Q. Wang and P. P. Drda, Macromolecules 29, 2627 (1996).Google Scholar
  26. 26.
    S.-Q. Wang and P. P. Drda, Macromol. Chem. Phys. 198, 673 (1997).Google Scholar
  27. 27.
    L. Robert, Y. Demay, and B. Vergnes, Rheol. Acta 43, 89 (2004).Google Scholar
  28. 28.
    E. B. Bagley, I. M. Cabott, and D. C. West, J. Appl. Phys. 29, 109 (1958).Google Scholar
  29. 29.
    A. P. Metzger, C. W. Hamilton, and E. H. Merz, SPE Trans. 3, 21 (1963).Google Scholar
  30. 30.
    A. P. Metzger and C. W. Hamilton, SPE Trans. 4, 107 (1964).Google Scholar
  31. 31.
    I. M. Lupton, Chem. Eng. Prog., Symp. Ser. 60, 17 (1964).Google Scholar
  32. 32.
    I. M. Lupton and J. W. Regester, Polym. Eng. Sci. 5, 235 (1965).Google Scholar
  33. 33.
    R. W. Myerholtz, J. Appl. Polym. Sci. 11, 687 (1967).Google Scholar
  34. 34.
    J. Molenaar and R. J. Koopmans, J. Rheol. (N. Y.) 38, 99 (1994).Google Scholar
  35. 35.
    K. P. Adewale and A. I. Leonov, Rheol. Acta 36, 110 (1997).Google Scholar
  36. 36.
    M. Ranganathan, M. R. Mackley, and P. H. J. Spitteler, J. Rheol. (N.Y.) 43, 443 (1999).Google Scholar
  37. 37.
    L. Robert, B. Vergnes, and Y. Demay, J. Rheol. (N. Y.) 44, 1183 (2000).Google Scholar
  38. 38.
    S.-Q. Wang and N. Plucktaveesak, J. Rheol. (N. Y.) 43, 453 (1999).Google Scholar
  39. 39.
    G. V. Vinogradov, Vysokomol. Soedin., Ser. A 13, 294 (1971).Google Scholar
  40. 40.
    G. V. Vinogradov, A. Ya. Malkin, Yu. G. Yanovskii, et al., Vysokomol. Soedin., Ser. A 14, 2425 (1972).Google Scholar
  41. 41.
    G. W. Winogradow, A. Ja. Malkin, B. W. Jarlykow, et al., Plast. Kautsch. 19, 907 (1972).Google Scholar
  42. 42.
    G. V. Vinogradov, A. Ya. Malkin, Yu. G. Yanovski, et al., J. Polym. Sci., Part A-2 10, 1061 (1972).Google Scholar
  43. 43.
    G. V. Vinogradov, A. Ya. Malkin, N. K. Blinova, et al., Eur. Polym. J. 9, 1231 (1973).Google Scholar
  44. 44.
    G. V. Vinogradov, Pure Appl. Chem. 39, 115 (1974).Google Scholar
  45. 45.
    G. V. Vinogradov, V. P. Protasov, and V. E. Dreval, Rheol. Acta 23, 46 (1984).Google Scholar
  46. 46.
    X. Yang, S.-Q. Wang, A. Halasa, and H. Ishida, Rheol. Acta 37, 415 (1998).Google Scholar
  47. 47.
    P. Taradia and S.-Q. Wang, Phys. Rev. Lett. 91, 198301 (2003).Google Scholar
  48. 48.
    P. Taradia and S.-Q. Wang, in Proceedings of Annual European Rheological Conference, Grenoble, 2005, p. 35.Google Scholar
  49. 49.
    R. E. Westover and B. Maxwell, SPE J. 13(8), 27 (1957).Google Scholar
  50. 50.
    R. E. Westover and B. Maxwell, SPE J. 13(8), 62 (1957).Google Scholar
  51. 51.
    F. B. Metzner, Ind. Eng. Chem. 50, 1577 (1958).Google Scholar
  52. 52.
    J. P. Tordella, Trans. Soc. Rheol. 1, 203 (1957).Google Scholar
  53. 53.
    F. Ram and F. Tamir, J. Appl. Polym. Sci. 8, 2751 (1964).Google Scholar
  54. 54.
    E. B. Bagley, Trans Soc. Rheol. 5, 355 (1961).Google Scholar
  55. 55.
    H. Schott, J. Polym. Sci., Part A 2, 3791 (1964).Google Scholar
  56. 56.
    S. M. Barnett, Polym. Eng. Sci. 7, 168 (1967).Google Scholar
  57. 57.
    J. L. White, J. Appl. Polym. Sci. 8, 1129 (1964).Google Scholar
  58. 58.
    J. L. White, J. Appl. Polym. Sci. 8, 2339 (1964).Google Scholar
  59. 59.
    A. Ya. Malkin and A. I. Leonov, Dokl. Akad. Nauk SSSR 151, 380 (1963).Google Scholar
  60. 60.
    G. V. Vinogradov, A. Ya. Malkin, and A. I. Leonov, Kolloid Z. Z. Polym. 191, 25 (1963).Google Scholar
  61. 61.
    J. R. A. Pearson and C. J. S. Petrie, in Proceedings of the Fourth International Rheological Congress, 1964, Vol. 3, p. 265.Google Scholar
  62. 62.
    N. Tokita and J. L. White, J. Appl. Polym. Sci. 10, 1011 (1966).Google Scholar
  63. 63.
    A. Ya. Malkin and A. I. Leonov, in Progress in Rheology of Polymers, Ed. by G. V. Vinogradov (Khimiya, Moscow, 1970) [in Russian].Google Scholar
  64. 64.
    G. V. Vinogradov, N. I. Insarova, V. V. Boiko, and E. K. Borisenkova, Polym. Eng. Sci. 12, 323 (1972).Google Scholar
  65. 65.
    G. V. Vinogradov, Rheol. Acta 12, 357 (1973).Google Scholar
  66. 66.
    G. V. Vinogradov and A. Ya. Malkin, Rheology of Polymers (Khimiya, Moscow, 1977; Springer, Berlin, 1980).Google Scholar
  67. 67.
    A. V. Ramamurthy, J. Rheol. (N. Y.) 30, 337 (1986).Google Scholar
  68. 68.
    V. G. Ghanta, B. L. Ruse, and M. M. Denn, J. Rheol. (N. Y.) 43, 435 (1999).Google Scholar
  69. 69.
    D. R. Arda and M. R. Mackley, J. Non-Newtonian Fluid Mech. 126, 47 (2005).Google Scholar
  70. 70.
    S. B. Kharchenko, P. M. McGuiggan, and K. B. Migler, J. Rheol. (N. Y.) 47, 1523 (2003).Google Scholar
  71. 71.
    R. Yip, S. G. Hatzikiriakos, and T. M. Clere, J. Vinyl Additive Technol. 6, 113 (2000).Google Scholar
  72. 72.
    E. E. Rosenbaum, S. K. Randa, S. G. Hatzikiriakos, et al., Polym. Eng. Sci. 40, 179 (2000).Google Scholar
  73. 73.
    G. R. Smoluk, Plast. Eng., 115 (1964).Google Scholar
  74. 74.
    L. L. Blyler and A. C. Hart, Polym. Eng. Sci. 10, 193 (1970).Google Scholar
  75. 75.
    D. S. Kalika and M. M. Denn, J. Rheol. (N. Y.) 31, 815 (1987).Google Scholar
  76. 76.
    S. G. Hatzikiriakos and J. M. Dealy, J. Rheol. (N. Y.) 36, 703 (1992).Google Scholar
  77. 77.
    S. G. Hatzikiriakos, Int. Polym. Process. 8, 135 (1993).Google Scholar
  78. 78.
    H. Mizunuma and H. Takagi, J. Rheol. (N. Y.) 47, 737 (2003).Google Scholar
  79. 79.
    S. H. Anastasiadis and S. G. Hatzikiriakos, J. Vinyl Additive Technol. 8, 7 (1998).Google Scholar
  80. 80.
    N. El Kissi and J.-M. Piau, J. Rheol. (N. Y.) 38, 1447 (1994).Google Scholar
  81. 81.
    S.-Q. Wang, P. A. Drda, and Y. W. Inn, J. Rheol. (N. Y.) 40, 875 (1996).Google Scholar
  82. 82.
    F. Legrand and J.-M. Piau, J. Non-Newtonian Fluid Mech. 77, 123 (1998).Google Scholar
  83. 83.
    Y. W. Inn, S.-Q. Wang, and M. T. Shaw, Macromol. Symp. 148, 65 (2000).Google Scholar
  84. 84.
    K. B. Migler, C. Lavallée, and M. P. Dillon, J. Rheol. (N. Y.) 45, 565 (2001).Google Scholar
  85. 85.
    F. N. Cogswell, Polym. Eng. Sci. 12, 64 (1972).Google Scholar
  86. 86.
    E. B. Howells and J. J. Benbow, Plast. Trans. J. 30, 240 (1962).Google Scholar
  87. 87.
    F. N. Cogswell, J. Non-Newtonian Fluid Mech. 2, 37 (1977).Google Scholar
  88. 88.
    C. Venet and B. Vergnes, J. Non-Newtonian Fluid Mech. 93, 117 (2000).Google Scholar
  89. 89.
    R. Rurgers and M. Mackley, J. Rheol. (N. Y.) 44, 1319 (2000).Google Scholar
  90. 90.
    V. I. Brizitsky, G. V. Vinogradov, A. I. Isayev, and Yu. Ya. Podolsky, J. Appl. Polym. Sci. 20, 25 (1976).Google Scholar
  91. 91.
    J.-M. Piau, N. El Kissi, and F. Mezghani, J. Non-Newtonian Fluid Mech. 59, 11 (1995).Google Scholar
  92. 92.
    N. El Kissi, J.-M. Piau, and F. Toussaint, J. Non-Newtonian Fluid Mech. 68, 271 (1997).Google Scholar
  93. 93.
    Yu. G. Yanovskii, L. I. Ivanova, and E. I. Frenkin, Mekh. Polim., No. 3, 530 (1970).Google Scholar
  94. 94.
    R. H. Moynihan, D. G. Baird, and R. Ramanathan, J. Non-Newtonian Fluid Mech. 36, 255 (1990).Google Scholar
  95. 95.
    C. I. Chung, Extrusion of Polymers. Theory and Practice (Hanser, Munich, 2000).Google Scholar
  96. 96.
    A. Santamaria, M. Fernández, E. Sanz, et al., Polymer 44, 2473 (2003).Google Scholar
  97. 97.
    A. S. Kechek’yan, G. P. Andrianova, and V. A. Kargin, Vysokomol. Soedin., Ser. A 12, 2424 (1970).Google Scholar
  98. 98.
    G. P. Andrianova, Yu. V. Popov, and B. A. Arutyunov, Vysokomol. Soedin., Ser. A 18, 2311 (1976).Google Scholar
  99. 99.
    G. P. Andrianova, B. A. Arutyunov, and Yu. V. Popov, J. Polym. Sci., Part B: Polym. Phys. 16, 1139 (1978).Google Scholar
  100. 100.
    S. L. Bazhenov, Yu. A. Rodionova, A. S. Kechek’yan, and A. K. Rogozinskii, Vysokomol. Soedin., Ser. A 47, 1131 (2005) [Polymer Science, Ser. A 47, 692 (2005)].Google Scholar
  101. 101.
    L. Robert, Y. Demay, and B. Vergnes, Rheol. Acta 43, 89 (2004).Google Scholar
  102. 102.
    J. R. A. Pearson, Mechanical Principles of Polymer Melt Processing (Pergamon, Oxford, 1966).Google Scholar
  103. 103.
    A. V. Karakin and A. I. Leonov, Zh. Prikl. Mekh. Tekh. Fiz., No. 3, 110 (1968).Google Scholar
  104. 104.
    V. Durand, B. Vergnes, J. F. Agassant, et al., J. Rheol. (N. Y.) 40, 383 (1996).Google Scholar
  105. 105.
    J. Van Doelder, R. Koopmans, M. Dees, and M. Mangnus, J. Rheol. (N. Y.) 49, 113 (2005).Google Scholar
  106. 106.
    H. Münstedt, M. Schmidt, and E. Wassner, J. Rheol. (N. Y.) 44, 413 (2000).Google Scholar
  107. 107.
    S.-O. Wang and P. A. Drda, Rheol. Acta 36, 128 (1997).Google Scholar
  108. 108.
    J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York, 1981; Inostrannaya Literatura, Moscow, 1963).Google Scholar
  109. 109.
    G. V. Vinogradov, A. Ya. Malkin, Yu. G. Yanovsky, et al., Rheol. Acta 8, 490 (1969).Google Scholar
  110. 110.
    Yu. G. Yanovskii and A. Ya. Malkin, in Progress in Rheology of Polymers, Ed. by G. V. Vinogradov (Khimiya, Moscow, 1970) [in Russian].Google Scholar
  111. 111.
    A. I. Leonov, Rheol. Acta 15, 85 (1976).Google Scholar
  112. 112.
    A. I. Leonov, J. Non-Newtonian Fluid Mech. 25, 1 (1987).Google Scholar
  113. 113.
    A. I. Leonov and A. Srinivasan, Rheol. Acta 30, 14 (1991).Google Scholar
  114. 114.
    E. K. Borisenkova, G. V. Vasil’ev, V. G. Kulichikhin, et al., Vysokomol. Soedin., Ser. A 40, 1823 (1998) [Polymer Science, Ser. A 40, 1124 (1998)].Google Scholar
  115. 115.
    K. P. Adewale and A. I. Leonov, Rheol. Acta 36, 110 (1997).Google Scholar
  116. 116.
    P. Taradia and S.-Q. Wang, Macromolecules 37, 9083 (2004).Google Scholar
  117. 117.
    T. C. B. McLeish and R. C. Ball, J. Polym. Sci., Part B: Polym. Phys. 24, 1735 (1986).Google Scholar
  118. 118.
    M. E. Cates, T. C. B. McLeish, and G. Marrucci, Europhys. Lett. 21, 451 (1993).Google Scholar
  119. 119.
    A. Ya. Malkin and B. V. Yarlykov, Mekh. Polim., No. 5, 930 (1978).Google Scholar
  120. 120.
    J. Lyngaae-Jorgensen and B. Marcher, Chem. Eng. Commun. 32, 117 (1985).Google Scholar
  121. 121.
    V. E. Dreval, G. V. Vinogradov, and V. P. Protasov, in Proceedings of IX International Congress on Rheology, Ed. by B. Mena, A. Garcia-Rejón, and C. Rangel-Nafaile (Univ. Nacional, México, 1984), Vol. 3, p. 185.Google Scholar
  122. 122.
    J. Pérez-González, J. Rheol. (N. Y.) 45, 845 (2001).Google Scholar
  123. 123.
    L. Pérez-Trejo, J. Pérez-González, L. De Vargas, and E. Moreno, Wear 257, 329 (2004).Google Scholar
  124. 124.
    J. Pérez-González, J. Rheol. (N. Y.) (in press) (2005).Google Scholar
  125. 125.
    S. Tonon, A. Levernhe-Gerbier, F. Flores, et al., J. Non-Newtonian Fluid Mech. 126, 63 (2005).Google Scholar
  126. 126.
    J. P. Tordella, Trans. Soc. Rheol. 7, 231 (1963).Google Scholar
  127. 127.
    G. V. Vinogradov, N. I. Insarova, B. B. Boiko, and E. K. Borisenkova, Polym. Eng. Sci. 12, 323 (1972).Google Scholar
  128. 128.
    C. D. Han and L. H. Drexler, J. Polym. Sci. 17, 2329 (1973).Google Scholar
  129. 129.
    A. B. Metzner, E. L. Carley, and I. K. Park, Mod. Plast. 37(11), 133 (1960).Google Scholar
  130. 130.
    C. Combeaud, Y. Demay, R. Valette, and B. Vergnes, in Proceedings of Annual European Rheological Conference, Grenoble, 2005, p. 179.Google Scholar
  131. 131.
    S. Kim and J. M. Dealy, Polym. Eng. Sci. 42, 482 (2002).Google Scholar
  132. 132.
    M. Sentmanat, E. B. Multiawan, and S. G. Hatzikiriakos, Rheol. Acta 44, 1 (2004).Google Scholar
  133. 133.
    M. Sentmanat and S. G. Hatzikiriakos, Rheol. Acta 43, 624 (2004).Google Scholar
  134. 134.
    S. G. Hatzikiriakos and J. M. Dealy, J. Rheol. (N. Y.) 36, 845 (1992).Google Scholar
  135. 135.
    S. G. Hatzikiriakos and J. M. Dealy, J. Rheol. (N. Y.) 35, 497 (1991).Google Scholar
  136. 136.
    K. M. Awati, Y. Park, E. Weisser, and M. E. Mackay, J. Non-Newtonian Fluid Mech. 89, 117 (2000).Google Scholar
  137. 137.
    K. B. Migler, H. Hervet, and I. Legér, Phys. Rev. Lett. 70, 287 (1993).Google Scholar
  138. 138.
    D. M. Kalyon and H. Gevgilili, J. Rheol. (N. Y.) 47, 683 (2003).Google Scholar
  139. 139.
    N. El Kissi and J.-M. Piau, J. Non-Newtonian Fluid Mech. 37, 55 (1990).Google Scholar
  140. 140.
    F. Brochard-Wyart, C. Gay, and P. G. De Gennes, Macromolecules 29, 377 (1996).Google Scholar
  141. 141.
    J. C. Baudez, S. Rodts, X. Chateau, and P. Coussot, J. Rheol. (N. Y.) 48, 49 (2004).Google Scholar
  142. 142.
    H. Gevgilili and D. M. Kalyon, J. Rheol. (N. Y.) 45, 1 (2001).Google Scholar
  143. 143.
    M. Mooney, J. Rheol. (N. Y.) 2, 210 (1931).Google Scholar
  144. 144.
    D. F. Moore, The Friction and Lubrication of Elastomers (Pergamon, New York, 1972).Google Scholar
  145. 145.
    A. Ya. Malkin, A. V. Baranov, and N. E. Vickulenkova, Rheol. Acta 32, 150 (1993).Google Scholar
  146. 146.
    J.-M. Piau and N. El Kissi, J. Non-Newtonian Fluid Mech. 54, 121 (1994).Google Scholar
  147. 147.
    J.-M. Piau and N. El Kissi, in Proceedings of XI International Congress on Rheology (Elsevier, Brussels, 1992), p. 70.Google Scholar
  148. 148.
    Y. Chen, D. A. Kalyon, and E. Bayramli, J. Appl. Polym. Sci. 50, 1169 (1993).Google Scholar
  149. 149.
    M. M. Denn, Annu. Rev. Fluid Mech. 33, 265 (2001).Google Scholar
  150. 150.
    U. Yilmazer and D. A. Kalyon, J. Rheol. (N. Y.) 33, 1197 (1989).Google Scholar
  151. 151.
    B. K. Aral and D. A. Kalyon, J. Rheol. (N. Y.) 38, 957 (1994).Google Scholar
  152. 152.
    L. Legér, B. Paphael, and H. Hervet, Adv. Polym. Sci. 138, 185 (1999).Google Scholar
  153. 153.
    M. M. Britton and P. T. Callaghan, J. Rheol. (N. Y.) 41, 1365 (1997).Google Scholar
  154. 154.
    M. M. Britton, R. V. Mair, R. K. Lambert, and P. T. Callaghan, J. Rheol. (N. Y.) 43, 897 (1999).Google Scholar
  155. 155.
    Y. N. Joshi, A. K. Lele, and A. K. Mashelkar, J. Non-Newtonian Fluid Mech. 89, 303 (2000).Google Scholar
  156. 156.
    G. M. Wise, M. M. Denn, and A. T. Bell, AIChE J. 44, 701 (1998).Google Scholar
  157. 157.
    G. M. Wise, M. M. Denn, A. T. Bell, et al., J. Rheol. (N. Y.) 44, 549 (2000).Google Scholar
  158. 158.
    F. Brochard and P. G. De Gennes, Langmuir 8, 3033 (1992).Google Scholar
  159. 159.
    D. F. Hill, J. Rheol. (N. Y.) 42, 581 (1998).Google Scholar
  160. 160.
    Y. Cohen and A. B. Metzner, AIChE Symp. 78, Ser. 212, 77 (1982).Google Scholar
  161. 161.
    M. Tirrel and M. P. Malone, J. Polym. Sci., Part B: Polym. Phys. 15, 1569 (1977).Google Scholar
  162. 162.
    H. Muller-Mohnssen, H. P. Lobl, and W. Schauerte, J. Rheol. (N. Y.) 31, 323 (1987).Google Scholar
  163. 163.
    G. M. Bartenev and Yu. S. Zuev, Strength and Fracture of Rubberlike Materials (Khimiya, Moscow, 1964) [in Russian].Google Scholar
  164. 164.
    T. L. Smith, J. Polym. Sci., Part A 1, 3597 (1963).Google Scholar
  165. 165.
    G. V. Vinogradov, A. Ya. Malkin, V. V. Volosevitch, et al., J. Polym. Sci., Part B: Polym. Phys. 13, 1721 (1975).Google Scholar
  166. 166.
    G. V. Vinogradov, A. Ya. Malkin, and V. V. Volosevitch, Appl. Polym. Symp., No. 27, 47 (1975).Google Scholar
  167. 167.
    M. K. Kurbanaliev, E. K. Borisenkova, G. V. Vinogradov, and A. Ya. Malkin, Vysokomol. Soedin., Ser. B 23, 912 (1981).Google Scholar
  168. 168.
    A. Ya. Malkin and G. V. Vinogradov, Vysokomol. Soedin., Ser. A 27, 227 (1985).Google Scholar
  169. 169.
    A. Ya. Malkin and C. J. S. Petrie, J. Rheol. (N. Y.) 41, 1 (1997).Google Scholar
  170. 170.
    A. Ya. Malkin, Rheology—Fundamentals (ChemTech, Toronto, 1994).Google Scholar
  171. 171.
    R. G. Larson, Rheol. Acta 31, 213 (1992).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. Ya. Malkin
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations