Oxidation of Dibenzothiophene in Water Vapor and Argon at Increased Pressure

Abstract

This article presents the results of study of dibenzothiophene (DBT, the fuel equivalence ratio \(\varphi = 0.94\)–1.01) oxidation in a medium of dense water vapor or argon at uniform heating (1 K/min) to 853 K of a tubular reactor made of stainless steel. The oxidation of DBT was found to proceed by the mechanisms of heterogeneous and homogeneous reactions. From the dynamics of the temperature of the reaction mixtures it follows that self-ignition of DBT in an environment of water vapor and argon occurs at 532 K. A Pt-Rh/Pt thermocouple introduced into the center of the reaction volume was found to have a catalytic effect on DBT oxidation. The results of mass spectrometry analysis of gas products show that the degree of carbon burnout exceeds 95% mol. The interaction of stainless steel and H\(_{2}\)SO\(_{4}\) formed in the DBT oxidation in water vapor causes steel corrosion, which is suppressed due to neutralization of the acid by calcium carbonate. The composition of the corrosion products was determined by the X-ray diffraction and energy-dispersive analysis methods.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. 1

    Bushnev, D.A., Burdelnaya, N.S., Shanina, S.N., and Makarova, E.S., Generation of Hydrocarbons and Heterocompounds by Sulfur-Rich Oil Shale in Hydrous Pyrolysis, Petrol. Chem., 2004, vol. 44, pp. 416–425.

  2. 2

    Grin’ko, A.A., Min, R.S., Sagachenko, T.A., and Golovko, A.K., Aromatics Sulfur-Containing Structural Units of Resins and Asphaltenes in Heavy Hydrocarbon Feedstock, Petrol. Chem., 2012, vol. 52, no. 4, pp. 249–455.

  3. 3

    Fedyaeva, O.N., Antipenko, V.R., and Vostrikov, A.A., Conversion of Sulfur-Rich Asphaltite in Supercritical Water and Effect of Metal Additives, J. Supercrit. Fluids, 2014, vol. 88, pp. 105–116.

  4. 4

    Sagachenko, T.A., Sergun, V.P., Cheshkova, T.V., Kovalenko, E.Yu., and Min, R.S., Chemical Nature of the Oil and Tarry-Asphaltene Components of Natural Bitumen from the Ashal’chinsk Deposit in Tatarstan, Solid Fuel Chem., 2015, no. 6, pp. 12–18.

  5. 5

    Dartiguelongue, C., Behar, F., Budzinski, H., Scachi, G., and Marquaire, P.M., Thermal Stability of Dibenzothiophene in Closed System Pyrolysis: Experimental Study and Kinetic Modelling, Organic Geochem., 2006, vol. 37, pp. 98–116.

  6. 6

    Patwardhan, P.R., Timko, M.T., Class, C.A., Bonomi, R.E., Kida, Y., Hernandez, H.H., Tester, J.W., and Green, W.H., Supercritical Water Desulfurization of Organic Sulfides is Consistent with Free-Radical Kinetics, Energy Fuels, 2013, vol. 27, pp. 6108–6117.

  7. 7

    Kishita, A., Takahashi, S., Jin, F., Yamasaki, Y., Moriya, T., and Enomoto, H., Decomposition of Benzothiophene, Dibenzothiophene, and Their Derivatives in Subcritical and Supercritical Water with Alkali, J. Jpn. Petrol. Inst., 2005, vol. 48, pp. 272–280.

  8. 8

    Veriansyah, B., Kim, J.-D., and Lee, J.-C., Destruction of Chemical Agent Simulants in a Supercritical Water Oxidation Bench-Scale Reactor, J. Hazard. Mater., 2007, vol. 147, pp. 8–14.

  9. 9

    Yan, Q., Hou, Y., Luo, J., Miao, H., and Zhang, H., The Exergy Release Mechanism and Exergy Analysis for Coal Oxidation in Supercritical Water Atmosphere and a Power Generation System Based on the New Technology, Energy Conv. Manag., 2016, vol. 129, pp. 122–130.

  10. 10

    Vostrikov, A.A., Fedyaeva, O.N., and Kolobov, V.I., Conversion of Tar in Supercritical Water/Oxygen Fluid, J. Eng. Therm., 2017, vol. 26, no. 1, pp. 1–9.

  11. 11

    Vostrikov, A.A. and Fedyaeva, O.N., Development Concept of Environmentally Sound Power Industry Based on Fuels Oxidation in Supercritical Water, Proc. 9th Sci. Eng. Conf. on Supercritical Fluids: Fundamentals, Technologies, Innovations, Sochi, Russia, October 9–14, 2017, pp. 226–228.

  12. 12

    Rocha, D.H.D. and Silva, R.J., Exergoenvironmental Analysis of an Ultra-Supercritical Coal-Fired Power Plants, J. Clean. Prod., 2019, vol. 231, pp. 671–682.

  13. 13

    Vostrikov, A.A., Fedyaeva, O.N., Shishkin, A.V., Tretyakov, D.S., and Sokol, M.Y., Features of Low-Temperature Oxidation of Hydrogen in the Medium of Nitrogen, Carbon Dioxide, and Water Vapor at Elevated Pressure, Int. J. Hydrogen Energy, 2018, vol. 43, pp. 10469–10480.

  14. 14

    Vostrikov, A.A., Fedyaeva O.N., Shishkin, A.V., Sokol, M.Ya., Kolobov, F.I., and Kolobov, V.I., Partial and Complete Methane Oxidation in Supercritical Water, J. Eng. Therm., 2016, vol. 25, no. 4, pp. 474–484.

  15. 15

    Fedyaeva, O.N., Artamonov, D.O., and Vostrikov, A.A., Features of Propene Oxidation in Argon, Carbon Dioxide and Water Vapor Media at a High Density of Reagents, J. Eng. Therm., 2018, vol. 27, no. 4, pp. 405–414.

  16. 16

    Fedyaeva, O.N., Artamonov, D.O., Sokol, M.Ya., and Vostrikov, A.A., Propane Burning in Argon, Carbon Dioxide, and Water Vapor at Increased Pressure, Thermophys. Aeromech., 2019, vol. 26, no. 4, pp. 599–609.

  17. 17

    Vostrikov, A.A., Fedyaeva, O.N., Shishkin, A.V., Artamonov, D.O., and Sokol, M.Ya., Features of Low-Temperature Oxidation of Isobutane in Water Vapor and Carbon Dioxide with Increased Density of Reagents, J. Eng. Therm., 2017, vol. 26, no. 4, pp. 466–475.

  18. 18

    Fedyaeva, O.N., Artamonov, D.O., and Vostrikov, A.A., Heterogeneous–Homogeneous Oxidation of Pyrrole in Water Vapor at Elevated Pressure, Combust. Flame, 2019, vol. 210, pp. 183–192.

  19. 19

    NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Linstrom, P.J. and Mallard, W.G., Eds., National Institute of Standards and Technology, Gaithersburg MD, 20899; https:// webbook.nist.gov/chemistry/.

  20. 20

    Freitas, V.L.S., Gomes, J.R.B., and Ribeiro da Silva, M.D.M.C., Revisiting Dibenzothiophene Thermochemical Data: Experimental and Computational Studies, J. Chem. Thermodyn., 2009, vol. 41, pp. 1199–1205.

  21. 21

    Lidin, P.A., Andreeva, L.L., and Molochko, V.A., Konstanty neorganicheskikh veshchestv: Spravochnik (The Constants of Inorganic Compounds: Handbook), Moscow: Drofa, 2006.

  22. 22

    Chirico, R.D., Knipmeyer, S.E., Nguyen, A., and Steele, W.V., The Thermodynamic Properties of Dibenzothiophene, J. Chem. Thermod., 1991, vol. 23, no. 5, pp. 431–450.

  23. 23

    Lemmon, E.W., McLinden, M.O., and Friend, D.G., Thermophysical Properties of Fluid Systems, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Linstrom, P.J. and Mallard, W.G., Eds., National Institute of Standards and Technology, Gaithersburg MD, 20899; https:// webbook.nist.gov/chemistry/fluid/.

  24. 24

    Fedyaeva, O.N., Vostrikov, A.A., Shishkin, A.V., Sokol, M.Ya., Borisova, L.S., and Kashirtsev, V.A., Conversion of Brown Coal in Sub- and Supercritical Water at Cyclic Pressurization and Depressurization, Russ. J. Phys. Chem. B, 2012, vol. 6, no. 7, pp. 793–803.

  25. 25

    Powder Diffraction File, PDF-4+; Release 2012.

  26. 26

    Guva, A.Ya., Kratkii teplofizicheskii spravochnik (Brief Thermophysical Handbook), Novosibirsk: Sibvuzizdat, 2002.

  27. 27

    Zeng, X., Mo, G., Wang, H., Zhou, R., and Zhao, C., Oxidation Mechanism of Dibenzothiophene Compounds: A Computational Study, Comput. Theor. Chem., 2014, vol. 1037, pp. 22–27.

  28. 28

    Bonzel, H.P. and Ku, R., On the Kinetics of Oxygen Adsorption on a Pt(111) Surface, Surface Sci., 1973, vol. 40, pp. 85–101.

  29. 29

    Zyubin, A.S., Zyubina, T.S., Dobrovol’skii, Y.A., and Volokhov, V.M., Oxygen Behavior on the Platinum Surface: A Quantum-Chemical Modeling, Russ. J. Inorg. Chem., 2013, vol. 58, no. 7, pp. 803–807.

  30. 30

    O’Brein, C.B., Jenness, G.B., Dong, H., Vlachos, D.G., and Lee, I.C., Deactivation of Pt/Al\(_{2}\)O\(_{3}\) during Propane Oxidation at Low Temperatures: Kinetic Regimes and Platinum Oxide Formation, J. Catal., 2016, vol. 337, pp. 122–132.

  31. 31

    Ranea, V.A. and Mola, E.E., Oxygen Assisted H\(_{2}\)O Dissociation on the Pt{110}(\(1\times 2\)) Surface from First Principles, Surface Sci., 2014, vol. 627, pp. 42–48.

  32. 32

    Otsuki, S., Nonaka, T., Qian, W., Ishihara, A., and Kabe, T., Oxidative Desulfurization of Middle Distillate—Oxidation of Dibenzothiophene Using t-Butyl Hypochlorite, Sekiyu Gakkaishi, 2001, vol. 44, no. 1, pp. 18–24.

  33. 33

    Li, S.-W., Li, J.-R., Gao, Y., Liang, L.-L., Zhang, R.-L., and Zhao, J.-S., Metal Modified Heteropolyacid Incorporated into Porous Materials for a Highly Oxidative Desulfurization of DBT under Molecular Oxygen, Fuel, 2017, vol. 197, pp. 551–561.

  34. 34

    Singh, C.P.P. and Saraf, D.N., Simulation of High-Temperature Water-Gas Shift Reactions, Ind. Eng. Chem. Process Des. Dev., 1977, vol. 16, no. 3, pp. 313–319.

  35. 35

    Akiya, N. and Savage, P.E., Roles of Water for Chemical Reactions in High-Temperature Water, Chem. Rev., 2002, vol. 102, pp. 2725–2750.

  36. 36

    Fedyaeva, O.N., Vostrikov, A.A., Antipenko, V.R., Shishkin, A.V., Kolobov, V.I., and Sokol, M.Ya., Role of Supercritical Water and Pyrite in Transformations of Propylene, Russ. J. Phys. Chem. B, 2017, vol. 11, no. 7, pp. 1117–1128.

  37. 37

    Wang, T., Xiang, B., Liu, J., and Shen, Z., Supercritical Water Oxidation of Sulfide, Environ. Sci. Technol., 2003, vol. 37, pp. 1955–1961.

  38. 38

    Adschiri, T., Shibata, R., Sato, T., Watanabe, M., and Arai, K., Catalytic Hydrodesulfurization of Dibenzothiophene through Partial Oxidation and a Water-Gas Shift Reaction in Supercritical Water, Ind. Eng. Chem. Res., 1998, vol. 37, pp. 2634–2638.

  39. 39

    Vostrikov, A.A., Fedyaeva, O.N., Shishkin, A.V., Sokol, M.Ya., Oxidation of Hydrogen Sulfide and Corrosion of Stainless Steel in Gas Mixtures Containing H\(_{2}\)S, O\(_{2}\), H\(_{2}\)O, and CO\(_{2}\), J. Eng. Therm., 2017, vol. 26, no. 3, pp. 314–324.

  40. 40

    Kritzer, P., Boukis, N., and Dinjus, E., Corrosion of Alloy 625 in High-Temperature, High-Pressure Sulfate Solutions, Corrosion, 1998, vol. 54, no. 9, pp. 689–699.

  41. 41

    Marochnik stalei i splavov (Handbook of Steels and Alloys), Zubchenko, A.S., Ed., Moscow: Mashinostroenie, 2003.

Download references

ACKNOWLEDGMENTS

The authors thank M.Ya. Sokol for mass spectrometry analysis of gas products and D.A. Yatsenko and E.A. Maksimovsky for X-ray diffraction and electron microscopy analysis of the samples.

Funding

This work was supported by RFBR (project no. 18-29-06005).

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. N. Fedyaeva.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fedyaeva, O.N., Shishkin, A.V. & Vostrikov, A.A. Oxidation of Dibenzothiophene in Water Vapor and Argon at Increased Pressure. J. Engin. Thermophys. 29, 549–560 (2020). https://doi.org/10.1134/S1810232820040037

Download citation