Journal of Engineering Thermophysics

, Volume 25, Issue 4, pp 495–503 | Cite as

Application of the modeling probability distribution functions for Lagrangian simulation of a passive tracer in the atmospheric boundary layer

Article

Abstract

The numerical stochastic Lagrangian modeling of the passive tracer in a convective atmospheric boundary layer (CABL) was performed based on the random walk and Langevinmodels of turbulent dispersion. The statistical structure of turbulence is modeled by the probability density function (PDF) of vertical velocity fluctuations, which is recovered by the calculated statistical moments of the vertical velocity fluctuations. Four models of the PDF reconstruction were tested and the results of simulations are compared with the experimental data in CABL. The superiority of Langevin model over the random-walk models is demonstrated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pasquill, F., Atmospheric Diffusion, 2nd ed., Hastled Press, New York, NY: Wiley, 1974.Google Scholar
  2. 2.
    Tennekes, H. and Lamley, J.L., A First Closure in Turbulence, Cambridge: MIT Press, 1972.Google Scholar
  3. 3.
    Enger, L., A Higher Order ClosureModel Applied to Dispersion in a Convective PBL, Atmos. Envir., 1986, vol. 20, no. 5, pp. 879–894.CrossRefGoogle Scholar
  4. 4.
    Duynkerke, P.G., Application of the E-ε Turbulence Closure Model to the Neutral and Stable Atmospheric Boundary Layer, J. Atmos. Sci., 1988, vol. 45, no. 5, pp. 865–880.ADSCrossRefGoogle Scholar
  5. 5.
    Andren, A.A., TKE-Dissipation Model for the Atmospheric Boundary Layer, Boundary-Layer Meteor., 1991, vol. 56, pp. 207–221.ADSCrossRefGoogle Scholar
  6. 6.
    Han van Dop and Frans, T.M., Nieuwstadt, in Atmospheric Turbulence and Air Pollution Modeling, D. Reider Publishing, 1981, p. 358.Google Scholar
  7. 7.
    Willis, G.E. and Deardorff, J.W., A Laboratory Study of Dispersion from a Source in the Middle of the Convective Mixed Layer, Atmos. Envir., 1981, vol. 15, pp. 109–117.CrossRefGoogle Scholar
  8. 8.
    Ilyushin, B.B. and Kurbatskii, A.F., Modeling of Contaminant Dispersion in the Atmospheric Convective Boundary Layer, Izv. RAN, Fiz. Atmos. Ok., 1996, vol. 32, no. 3, p. 283.Google Scholar
  9. 9.
    Ilyushin, B.B., Use of the HigherMoments to Construct PDFs in Stratified Flows, in Closure Strategies for Turbulent and Transitional Flows, Launder, B.E. and Sandham, N.D., Eds., Cambridge University Press, 2001, pp. 683–699.Google Scholar
  10. 10.
    Wilson, J.D. and Sawford, B.L., Review of Lagrangian Stochastic Models for Trajectories in the Turbulent Atmosphere, Bound. LayerMeteor., 1996, vol. 78, pp. 191–210.ADSCrossRefGoogle Scholar
  11. 11.
    Minier, J.-P., Chibbaro, S., and Pope, S.B., Guidelines for the Formulation of Lagrangian StochasticModels for Particle Simulations of Single-Phase and Dispersed Two-Phase Turbulent Flows, Phys. Fluids, 2014, vol. 26, p. 113303.ADSCrossRefGoogle Scholar
  12. 12.
    Wilson, J.D., A Critical Examination of the Random Displacement Model of Turbulent Dispersion, Bound. LayerMeteor., 2007, vol. 125, pp. 399–416.ADSCrossRefGoogle Scholar
  13. 13.
    Ilyushin, B.B., Simulation of the Diurnal Evolution of the Atmospheric Boundary Layer, Izv. RAN, Fiz. Atmos. Ok., 2014, vol. 50, no. 3, p. 246.CrossRefGoogle Scholar
  14. 14.
    Baerentsen, J.H. and Berkowicz, R., Monte-CarloSimulation of Plume Diffusion in the Convective Boundary Layer, Atmos. Envir., 1964, vol. 18, p. 701–712.CrossRefGoogle Scholar
  15. 15.
    Jaynes, E.T., Information Theory and Statistical Mechanics, Phys. Rev., 1957, vol. 106, pp. 620–630.ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Millionshtchikov, M.D., On the Role of the Third Moments in Isotropic Turbulence, C.R. Acad. Sci. SSSR, 1941, vol. 32, p. 619.MathSciNetGoogle Scholar
  17. 17.
    Fritsch, S.A. and Businger, J.A., A Study of Convective Elements in the Atmospheric Surface Layer, Boundary-Layer Met., 1973, vol. 3, pp. 301–328.ADSCrossRefGoogle Scholar
  18. 18.
    Hunt, J.C., Kaimal, J.C., and Gaylor, J.E., Eddy Structure in the Convective Planetary Boundary Layer— NewMeasurements and New Concepts, Q.J.R.Met. Soc., 1988, vol. 114, pp. 827–858.ADSGoogle Scholar
  19. 19.
    Ilyushin, B.B. and Kurbatskii, A.F., Modeling Triple Correlations in the Convective Atmospheric Boundary Layer, Izv. RAN, Fiz. Atmos. Ok., 1988, vol. 34, no. 5, p. 575.Google Scholar
  20. 20.
    Byzova, N.L., Ivanov, V.N., and Garger, E.K., Experimental Investigations of Atmospheric Diffusion and Pollution Dispersion Calculations, Gidrometeoizdat, 1991.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • I. V. Mitin
    • 1
    • 2
  • D. Ph. Sikovsky
    • 1
    • 2
  • B. B. Ilyushin
    • 1
    • 2
  1. 1.Kutateladze Institute of Thermophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations