Skip to main content
Log in

Application of the modeling probability distribution functions for Lagrangian simulation of a passive tracer in the atmospheric boundary layer

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The numerical stochastic Lagrangian modeling of the passive tracer in a convective atmospheric boundary layer (CABL) was performed based on the random walk and Langevinmodels of turbulent dispersion. The statistical structure of turbulence is modeled by the probability density function (PDF) of vertical velocity fluctuations, which is recovered by the calculated statistical moments of the vertical velocity fluctuations. Four models of the PDF reconstruction were tested and the results of simulations are compared with the experimental data in CABL. The superiority of Langevin model over the random-walk models is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pasquill, F., Atmospheric Diffusion, 2nd ed., Hastled Press, New York, NY: Wiley, 1974.

    Google Scholar 

  2. Tennekes, H. and Lamley, J.L., A First Closure in Turbulence, Cambridge: MIT Press, 1972.

    Google Scholar 

  3. Enger, L., A Higher Order ClosureModel Applied to Dispersion in a Convective PBL, Atmos. Envir., 1986, vol. 20, no. 5, pp. 879–894.

    Article  Google Scholar 

  4. Duynkerke, P.G., Application of the E-ε Turbulence Closure Model to the Neutral and Stable Atmospheric Boundary Layer, J. Atmos. Sci., 1988, vol. 45, no. 5, pp. 865–880.

    Article  ADS  Google Scholar 

  5. Andren, A.A., TKE-Dissipation Model for the Atmospheric Boundary Layer, Boundary-Layer Meteor., 1991, vol. 56, pp. 207–221.

    Article  ADS  Google Scholar 

  6. Han van Dop and Frans, T.M., Nieuwstadt, in Atmospheric Turbulence and Air Pollution Modeling, D. Reider Publishing, 1981, p. 358.

    Google Scholar 

  7. Willis, G.E. and Deardorff, J.W., A Laboratory Study of Dispersion from a Source in the Middle of the Convective Mixed Layer, Atmos. Envir., 1981, vol. 15, pp. 109–117.

    Article  Google Scholar 

  8. Ilyushin, B.B. and Kurbatskii, A.F., Modeling of Contaminant Dispersion in the Atmospheric Convective Boundary Layer, Izv. RAN, Fiz. Atmos. Ok., 1996, vol. 32, no. 3, p. 283.

    Google Scholar 

  9. Ilyushin, B.B., Use of the HigherMoments to Construct PDFs in Stratified Flows, in Closure Strategies for Turbulent and Transitional Flows, Launder, B.E. and Sandham, N.D., Eds., Cambridge University Press, 2001, pp. 683–699.

    Google Scholar 

  10. Wilson, J.D. and Sawford, B.L., Review of Lagrangian Stochastic Models for Trajectories in the Turbulent Atmosphere, Bound. LayerMeteor., 1996, vol. 78, pp. 191–210.

    Article  ADS  Google Scholar 

  11. Minier, J.-P., Chibbaro, S., and Pope, S.B., Guidelines for the Formulation of Lagrangian StochasticModels for Particle Simulations of Single-Phase and Dispersed Two-Phase Turbulent Flows, Phys. Fluids, 2014, vol. 26, p. 113303.

    Article  ADS  Google Scholar 

  12. Wilson, J.D., A Critical Examination of the Random Displacement Model of Turbulent Dispersion, Bound. LayerMeteor., 2007, vol. 125, pp. 399–416.

    Article  ADS  Google Scholar 

  13. Ilyushin, B.B., Simulation of the Diurnal Evolution of the Atmospheric Boundary Layer, Izv. RAN, Fiz. Atmos. Ok., 2014, vol. 50, no. 3, p. 246.

    Article  Google Scholar 

  14. Baerentsen, J.H. and Berkowicz, R., Monte-CarloSimulation of Plume Diffusion in the Convective Boundary Layer, Atmos. Envir., 1964, vol. 18, p. 701–712.

    Article  Google Scholar 

  15. Jaynes, E.T., Information Theory and Statistical Mechanics, Phys. Rev., 1957, vol. 106, pp. 620–630.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Millionshtchikov, M.D., On the Role of the Third Moments in Isotropic Turbulence, C.R. Acad. Sci. SSSR, 1941, vol. 32, p. 619.

    MathSciNet  Google Scholar 

  17. Fritsch, S.A. and Businger, J.A., A Study of Convective Elements in the Atmospheric Surface Layer, Boundary-Layer Met., 1973, vol. 3, pp. 301–328.

    Article  ADS  Google Scholar 

  18. Hunt, J.C., Kaimal, J.C., and Gaylor, J.E., Eddy Structure in the Convective Planetary Boundary Layer— NewMeasurements and New Concepts, Q.J.R.Met. Soc., 1988, vol. 114, pp. 827–858.

    ADS  Google Scholar 

  19. Ilyushin, B.B. and Kurbatskii, A.F., Modeling Triple Correlations in the Convective Atmospheric Boundary Layer, Izv. RAN, Fiz. Atmos. Ok., 1988, vol. 34, no. 5, p. 575.

    Google Scholar 

  20. Byzova, N.L., Ivanov, V.N., and Garger, E.K., Experimental Investigations of Atmospheric Diffusion and Pollution Dispersion Calculations, Gidrometeoizdat, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Ilyushin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitin, I.V., Sikovsky, D.P. & Ilyushin, B.B. Application of the modeling probability distribution functions for Lagrangian simulation of a passive tracer in the atmospheric boundary layer. J. Engin. Thermophys. 25, 495–503 (2016). https://doi.org/10.1134/S1810232816040068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232816040068

Navigation