Skip to main content
Log in

Synthesis and morphology of silicon oxide nanowires from a free jet activated by electron-beam plasma

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Silicon oxide nanowires were synthesized from monosilane–argon–hydrogen mixture by the gas-jet electron-beam plasma chemical deposition method with simultaneous oxygen injection into the vacuum chamber. The synthesis was performed on monocrystalline silicon substrates covered with micron and nanometer tin catalyst particles. The nanowires are formed the via vapor–liquid–solid mechanism in the “catalyst-on-bottom” mode, in which many nanowires grow from one catalyst particle. The process of synthesizing nanowires on a substrate with catalyst consists of three stages: heating to synthesis temperature, hydrogen plasma treatment, and nanowire growth. In the substrate region corresponding to the jet axis, different structures are formed depending on the catalyst particle size. For catalyst particles under 100 nm, there are formed structures of chaotically oriented and interlaced bundles of silica nanowires. For catalyst particles of 0.3–1 micron, there are formed oriented arrays of cylindrically shaped nanowire bundles (“microropes”). Cocoon-like structures are formed for catalyst particles of more than 1 micron.We propose a model of nanowire growth by this method, which is based on nonuniform heating of a catalyst particle by a directed plasma flow. It was found that for synthesis of oriented microrope arrays the initial tin film thickness should be less than 100 nm and the synthesis process should include a hydrogen plasma treatment stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O’Donnell, B., Yu, L., Foldyna, M., and Roca i Cabarrocas, P., J. Non-Crystal. Sol., 2012, vol. 358, pp. 2299–2302.

    Article  ADS  Google Scholar 

  2. Kayes, B.M., Atwater, H.A., and Lewis, N.S., J. Appl. Phys., 2005, vol. 97, p. 114302.

    Article  ADS  Google Scholar 

  3. Kim, J., Battaglia, C., Charriere, M., Hong, A., Jung, W., Park, H., Ballif, C., and Sadana D., Adv. Mater., 2014, vol. 26, pp. 4082–4086.

    Article  Google Scholar 

  4. Huang, N., Lin, C., and Povinelli, M.L., J. Opt., 2012, vol. 14, p. 024004.

    Article  ADS  Google Scholar 

  5. Dubrovskii, V.G., Cirlin, G.E., and Ustinov, V.M., Semiconductors, 2009, vol. 43, pp. 1539–1584.

    Article  ADS  Google Scholar 

  6. Misra, S., Yu, L., Foldina, M., and Roca i Cabarrocas, P., Solar Energy Mat. Solar Cells, 2013, vol. 118, pp. 90–95.

    Article  Google Scholar 

  7. Misra, S., Yu, L., Chen, W., Foldina, M., and Roca i Cabarrocas, P., J. Phys. D: Appl. Phys., 2014, vol. 47, p. 393001.

    Article  Google Scholar 

  8. Neykova, N., Hruska, K., Holovsky, J., Remes, Z., and Vanecek, M., Thin Solid Films, 2013, vol. 543, pp. 110–113.

    Article  ADS  Google Scholar 

  9. Wagner, R.S. and Ellis, W.C., Appl. Phys. Lett., 1964, vol. 4, pp. 89–90.

    Article  ADS  Google Scholar 

  10. Carole, D., Brioude, A., Pillonnet, A., Lorenzzi, J., Kim-Hak, O., Cauwet, F., and Ferro, G., J. Cryst.Growth, 2011, vol. 320, pp. 55–62.

    Article  ADS  Google Scholar 

  11. Yu, L., O’Donnell, B., Alet, P.-J., Conesa-Boj, S., Peiro, F., Arbiol, J., and Roca i Cabarrocas, P., Nanotechnology, 2009, vol. 20, p. 225604.

    Article  ADS  Google Scholar 

  12. Sharafutdinov, R.G., Khmel, S.Ya., Shchukin, V.G., Ponomarev, M.V., Baranov, E.A., Volkov, A.V., Semenova, O.I., Fedina, L.I., Dobrovolsky, P.P., and Kolesov, B.A., Solar Energy Mat. Solar Cells, 2005, vol. 89, pp. 99–111.

    Article  Google Scholar 

  13. Khmel, S.Ya., J. Eng. Therm., 2012, vol. 21, pp. 52–59.

    Article  Google Scholar 

  14. Baranov, E.A., Khmel, S.Ya., and Zamchiy, A.O., IEEE Trans. Plasma Sci., 2014, vol. 42, pp. 2794–2795.

    Article  ADS  Google Scholar 

  15. Burdovitsin, V.A. and Oks, E.M., Laser and Particle Beams, 2008, vol. 26, pp. 619–635.

    Article  Google Scholar 

  16. Khmel, S.Ya., Baranov, E.A., and Zamchiy, A.O., Proc. 28th European Photovoltaic Solar Energy Conf., France, Paris, 2013, pp. 395–398.

    Google Scholar 

  17. Baranov, E.A., Zamchiy, A.O., and Khmel, S.Ya., Tech. Phys. Lett., 2013, vol. 39, pp. 1023–1025.

    Article  ADS  Google Scholar 

  18. Zamchiy, A.O., Baranov, E.A., and Khmel, S.Ya., Physica Status Solidi C, 2014, vol. 11, pp. 1397–1400.

    Article  Google Scholar 

  19. Qu, J., Zhao, Z., Wang, X., Qiu, J., and Gogotsi, Y., Mater. Express, 2012, vol. 2, p. 1.

    Article  Google Scholar 

  20. Rebrov, A.K., J. Vac. Sci. Technol. A, 2001, vol. 19, pp. 1679–1687.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Khmel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranov, E.A., Zamchiy, A.O. & Khmel, S.Y. Synthesis and morphology of silicon oxide nanowires from a free jet activated by electron-beam plasma. J. Engin. Thermophys. 25, 239–247 (2016). https://doi.org/10.1134/S1810232816020090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232816020090

Keywords

Navigation