Skip to main content
Log in

Performance optimization of a microchannel heat sink using the Improved Strength Pareto Evolutionary Algorithm (SPEA2)

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

In this paper, a feasible optimization scheme for rectangular microchannel heat sinks, which incorporates the thermal resistance model and the Improved Strength Pareto Evolutionary Algorithm (SPEA2), is reported. An alternative coolant, namely, ammonia gas, is used to improve the overall thermal and hydrodynamic performances of the considered system. Results from the optimization showed significant reduction in the total thermal resistance compared to the conventional air-cooled systems up to 35% for the same allowable pumping power. The SPEA2 exhibited excellent performance when it was compared to another multiobjective algorithm, NSGA2. The results reported in this study open the door for the incorporation of some other algorithms, which have not been used in the optimization of microchannel heat sinks. Finally, the outcome of this paper predicts a promising future for the usage of ammonia gas in the area of electronics cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hetsroni, G., Gurevich, M., Mosyak, A., and Rozenblit, R., Drug Reduction and Heat Transfer of Surfactants Flowing in a Capillary Tube, Int. J. Heat Mass Transfer, 2004, vol. 47, pp. 3797–3809.

    Article  Google Scholar 

  2. Husain, A. and Kim, K.Y., Enhanced Multi-Objective Optimization of a Microchannel Heat Sink through Evolutionary Algorithm Coupled with Multiple Surrogate Models, Appl. Therm. Eng., 2010, vol. 30, pp. 1683–1691, doi: 10.1016/j.appithermaleng.2010.03.027.

    Article  Google Scholar 

  3. Tiselj, I., Hetsroni, G., Mavko, B., Mosyak, A., Pogrebnyak, E., and Segal, Z., Effect of Axial Conduction on the Heat Transfer in Micro-Channels, Int. J. Heat Mass Transfer, 2004, vol. 47, pp. 2551–2565, doi: 10.1016/j.iheatmasstransfer.2004.01.008.

    Article  Google Scholar 

  4. McHale, J.P. and Garimella, S.V., Heat Transfer in Trapezoidal Microchannels of Various Aspect Ratios, Int. J. Heat Mass Transfer, 2010, vol. 53, pp. 365–375, doi: 10.1016/j.ijheatmasstransfer.2009.09.020.

    Article  MATH  Google Scholar 

  5. Perret, C., Schaeffer, Ch., and Boussey, J., Microchannel Integrated Heat Sinks in Silicon Technology, Proc. 1998 IEEE Industry Applications Conf., USA, 1998, vol. 2, pp. 1051–1055.

    Google Scholar 

  6. Hetsroni, G., Mosyak, A., Pogerbnyak, E., and Yarin, L.P., Heat Transfer in Micro-Channels: Comparison of Experiments with Theory and Numerical Results, Int. J. Heat Mass Transfer, 2005, vol. 48 pp. 5580–5601, doi: 10.1016/j.ijheatmasstransfer.2005.05.041.

    Article  Google Scholar 

  7. Kosar, A., Effect of Substrate Thickness and Material on Heat Transfer in Microchannel Heat Sinks, Int. J. Therm. Sci., 2010, vol. 49, pp. 635–642, doi: 10.1016/j.ijthermalsci.2009.11.004.

    Article  Google Scholar 

  8. Mohammed, H.A., Gunnasegaran, P., and Shuaib, N.H., Heat Transfer in Rectangular Microchannels Heat Sink Using Nanofluids, Int. Comm. Heat Mass Transfer, 2010, vol. 37, pp. 1496–1503, doi: 10.1016/j.icheatmasstransfer.2010.08.020.

    Article  Google Scholar 

  9. Escher, W., Brunschwiler, T., Shalkevich, N., Shalkevich, A., Burgi, T., Michel, B., and Poulikakos, D., On the Cooling of Electronics with Nanofluids, J. Heat Transfer, 2011, vol. 133, pp. 051401-1–051401-11.

    Article  Google Scholar 

  10. Goldberg, N., Narrow Channel Forced Air Heat Sink, IEEE Trans., Components, Hybrids, Manufacturing Tech., 1984, vol. 1, pp. 154–159.

    Article  Google Scholar 

  11. Kleiner, M.B., Kuhn, A.S., and Haberger, K., High Performance Forced Air Cooling Scheme Employing Microchannel Heat Exchangers, IEEE Trans., Components, Hybrids and Manufacturing Tech., part A, 1995, vol. 18, no. 4, pp. 795–804.

    Article  Google Scholar 

  12. Khan, W.A., Yovanovich, M.M., and Culham, J.R., Optimization of Microchannel Heat Sinks Using Entropy Generation Minimization Method, IEEE Trans., Components and Packaging Tech., 2009, vol. 32, pp. 243–251, doi: 10.1109/TCAPT.2009.2022586.

    Article  Google Scholar 

  13. Tuckerman, D.B. and Pease, R.F.W., High Performance Heat Sinking for VLSI, IEEE Electr. DEV Lett., 1981, vol. 2, pp. 126–129.

    Article  ADS  Google Scholar 

  14. Wen, Z. and Choo, F.K., The Optimum Thermal Design of Microchannel Heat Sinks, IEEE/CPMT Proc. 1st Electronic Packaging Technology Conf., 1997, pp. 123–129.

    Google Scholar 

  15. Liu, D. and Garimella, S.V., Analysis and Optimization of the Thermal Performance of Microchannel Heat Sinks, Int. J. Numer. Methods Heat Fluid Flow, 2005, vol. 15, no. 1, pp. 7–26, doi: 10.1108/09615530510571921.

    Article  MATH  Google Scholar 

  16. Deng, B., Qi, Y.C., and Kim, N., An Improved Porous Medium Model for Microchannel Heat Sinks, Appl. Therm. Eng., 2010, vol. 30, pp. 2512–2517, doi: 10.1016/j.applthermaleng.2010.06.025.

    Article  Google Scholar 

  17. Li, J. and Kleinstreuer, C., Entropy Generation Analysis for Nanofluid Flow in Microchannels, J. Heat Transfer, 2011, vol. 132, pp. 122401-1–122041-8.

    Google Scholar 

  18. Ijam, A. and Saidur, R., Nanofluid as a Coolant for Electronic Devices (Cooling of Electronic Devices), Appl. Therm. Eng., 2012, vol. 32, pp. 76–82, doi: 10.1016/j.applthermaleng.2011.08.032.

    Article  Google Scholar 

  19. Hu, G. and Xu, S., Optimization Design of Microchannel Heat Sink Based on SQP Method and Numerical Simulation, IEEE Proc. Applied Superconductivity and Electromagnetic Devices, Chengdu, China, 2009, pp. 89–92.

    Google Scholar 

  20. Garimella, S.V., Singhal, V., and Liu, D., On-Chip Thermal Management with Microchannel Heat Sinks and Integrated Micropumps, Proc. IEEE, 2006, vol. 94, no. 8, pp. 1534–1548, doi: 10.1109/JPROC.2006.879801.

    Article  Google Scholar 

  21. Mohammed, H.A., Bhaskaran, G., Shuaib, N.H., and Saidur, R., Heat Transfer and Fluid Flow Characteristics in Microchannel Heat Exchanger Using Nanofluids: a Review, Renewable Sust. Energy Reviews, 2010, vol. 15, pp. 1502–1511.

    Article  Google Scholar 

  22. Choquette, S.F., Faghri, M., Charmchi, M., and Asako, Y., Optimum Design of Microchannel Heat Sinks. Microelectromechanical Systems (MEMS), Am. Soc.Mech. Engin., Dynamic Syst. Control, 1996, vol. 59, pp. 115–126.

    Google Scholar 

  23. Li, J. and Peterson G.P., Geometrical Optimization of a Micro Heat Sink with Liquid Flow, IEEE Tran. Components Packaging Tech., 2006, vol. 29, pp. 145–154, doi: 10.1109/TCAPT.2006.

    Article  MATH  Google Scholar 

  24. Xie, X.L., Liu, Z.J., He, Y.L., and Tao, W.Q., Numerical Study of Laminar Heat Transfer and Pressure Drop Characteristics in a Water-Cooled Minichannel Heat Sink, Appl. Therm. Eng., 2009, vol. 29, pp. 64–74, doi: 10.1016/j.applthermaleng.2008.02.002.

    Article  Google Scholar 

  25. Husain, A. and Kim, K., Multiobjective Optimization of a Microchannel Heat Sink Using Evolutionary Algorithm, J. Heat Transfer, 2008, vol. 130, pp. 114505-1–114505-3.

    Article  Google Scholar 

  26. Husain, A. and Kim, K., Microchannel Heat Sinking: Analysis and Optimization, Proc. 4th Int. Symp. on Fluid Machinery and Fluid Engin., 2008, Beijing, China pp. 185–190.

    Google Scholar 

  27. Zitzler, E., Laumanns, M., and Thiele, L., SPEA2: Improving the Strength Pareto Evolutionary Algorithm, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, Techn. rep. TIK-Report 103, 2001.

  28. Kim, S.J. and Kim, D., Forced Convection in Microstructures for Electronic Equipment Cooling. J. Heat Transfer, 1999, vol. 121, pp. 639–645.

    Article  Google Scholar 

  29. Copeland, D., Optimization of Parallel Plate Heat Sinks for Forced Convection, Sixteenth IEEE Semi-Therm Symp., 2000, pp. 266–272.

    Google Scholar 

  30. Rivas-Davalos, F. and Irving, M.R., An Approach Based on the Strength Pareto Evolutionary Algorithm 2 for Power Distribution System Planning, Techn. rep., 2004.

    Google Scholar 

  31. Zitzler, E. and Thiele, L., Multiobjective Evolutionary Algorithm: A Comparative Case Study and the Strength Pareto Approach, IEEE Trans. Evolutionary Computation, 1999, vol. 3, pp. 257–271.

    Article  Google Scholar 

  32. Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T., A Fast and Elitist Multi-Objective Genetic Algorithm for Multi-Objective Optimization, NSGA-2, Proc. Parallel Problem Solving from Nature VI Conf., Paris, 2002, pp. 849–858, doi: S1089-778X(02)04101-2.

    Google Scholar 

  33. Husain, A. and Kim, K.Y., Optimization of a Microchannel Heat Sink with Temperature Dependent Fluid Properties, Appl. Therm. Eng., 2008, vol. 28, pp. 1101–1107, doi: 10.1016/j.appithermaleng.2007.12.001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Adham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adham, A.M., Mohd-Ghazali, N. & Ahmad, R. Performance optimization of a microchannel heat sink using the Improved Strength Pareto Evolutionary Algorithm (SPEA2). J. Engin. Thermophys. 24, 86–100 (2015). https://doi.org/10.1134/S1810232815010087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232815010087

Keywords

Navigation