Advertisement

Journal of Engineering Thermophysics

, Volume 24, Issue 1, pp 86–100 | Cite as

Performance optimization of a microchannel heat sink using the Improved Strength Pareto Evolutionary Algorithm (SPEA2)

Article

Abstract

In this paper, a feasible optimization scheme for rectangular microchannel heat sinks, which incorporates the thermal resistance model and the Improved Strength Pareto Evolutionary Algorithm (SPEA2), is reported. An alternative coolant, namely, ammonia gas, is used to improve the overall thermal and hydrodynamic performances of the considered system. Results from the optimization showed significant reduction in the total thermal resistance compared to the conventional air-cooled systems up to 35% for the same allowable pumping power. The SPEA2 exhibited excellent performance when it was compared to another multiobjective algorithm, NSGA2. The results reported in this study open the door for the incorporation of some other algorithms, which have not been used in the optimization of microchannel heat sinks. Finally, the outcome of this paper predicts a promising future for the usage of ammonia gas in the area of electronics cooling.

Keywords

Thermal Resistance Multiobjective Optimization Channel Height Pareto Optimal Front Engineer THERMOPHYSICS 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hetsroni, G., Gurevich, M., Mosyak, A., and Rozenblit, R., Drug Reduction and Heat Transfer of Surfactants Flowing in a Capillary Tube, Int. J. Heat Mass Transfer, 2004, vol. 47, pp. 3797–3809.CrossRefGoogle Scholar
  2. 2.
    Husain, A. and Kim, K.Y., Enhanced Multi-Objective Optimization of a Microchannel Heat Sink through Evolutionary Algorithm Coupled with Multiple Surrogate Models, Appl. Therm. Eng., 2010, vol. 30, pp. 1683–1691, doi: 10.1016/j.appithermaleng.2010.03.027.CrossRefGoogle Scholar
  3. 3.
    Tiselj, I., Hetsroni, G., Mavko, B., Mosyak, A., Pogrebnyak, E., and Segal, Z., Effect of Axial Conduction on the Heat Transfer in Micro-Channels, Int. J. Heat Mass Transfer, 2004, vol. 47, pp. 2551–2565, doi: 10.1016/j.iheatmasstransfer.2004.01.008.CrossRefGoogle Scholar
  4. 4.
    McHale, J.P. and Garimella, S.V., Heat Transfer in Trapezoidal Microchannels of Various Aspect Ratios, Int. J. Heat Mass Transfer, 2010, vol. 53, pp. 365–375, doi: 10.1016/j.ijheatmasstransfer.2009.09.020.CrossRefMATHGoogle Scholar
  5. 5.
    Perret, C., Schaeffer, Ch., and Boussey, J., Microchannel Integrated Heat Sinks in Silicon Technology, Proc. 1998 IEEE Industry Applications Conf., USA, 1998, vol. 2, pp. 1051–1055.Google Scholar
  6. 6.
    Hetsroni, G., Mosyak, A., Pogerbnyak, E., and Yarin, L.P., Heat Transfer in Micro-Channels: Comparison of Experiments with Theory and Numerical Results, Int. J. Heat Mass Transfer, 2005, vol. 48 pp. 5580–5601, doi: 10.1016/j.ijheatmasstransfer.2005.05.041.CrossRefGoogle Scholar
  7. 7.
    Kosar, A., Effect of Substrate Thickness and Material on Heat Transfer in Microchannel Heat Sinks, Int. J. Therm. Sci., 2010, vol. 49, pp. 635–642, doi: 10.1016/j.ijthermalsci.2009.11.004.CrossRefGoogle Scholar
  8. 8.
    Mohammed, H.A., Gunnasegaran, P., and Shuaib, N.H., Heat Transfer in Rectangular Microchannels Heat Sink Using Nanofluids, Int. Comm. Heat Mass Transfer, 2010, vol. 37, pp. 1496–1503, doi: 10.1016/j.icheatmasstransfer.2010.08.020.CrossRefGoogle Scholar
  9. 9.
    Escher, W., Brunschwiler, T., Shalkevich, N., Shalkevich, A., Burgi, T., Michel, B., and Poulikakos, D., On the Cooling of Electronics with Nanofluids, J. Heat Transfer, 2011, vol. 133, pp. 051401-1–051401-11.CrossRefGoogle Scholar
  10. 10.
    Goldberg, N., Narrow Channel Forced Air Heat Sink, IEEE Trans., Components, Hybrids, Manufacturing Tech., 1984, vol. 1, pp. 154–159.CrossRefGoogle Scholar
  11. 11.
    Kleiner, M.B., Kuhn, A.S., and Haberger, K., High Performance Forced Air Cooling Scheme Employing Microchannel Heat Exchangers, IEEE Trans., Components, Hybrids and Manufacturing Tech., part A, 1995, vol. 18, no. 4, pp. 795–804.CrossRefGoogle Scholar
  12. 12.
    Khan, W.A., Yovanovich, M.M., and Culham, J.R., Optimization of Microchannel Heat Sinks Using Entropy Generation Minimization Method, IEEE Trans., Components and Packaging Tech., 2009, vol. 32, pp. 243–251, doi: 10.1109/TCAPT.2009.2022586.CrossRefGoogle Scholar
  13. 13.
    Tuckerman, D.B. and Pease, R.F.W., High Performance Heat Sinking for VLSI, IEEE Electr. DEV Lett., 1981, vol. 2, pp. 126–129.ADSCrossRefGoogle Scholar
  14. 14.
    Wen, Z. and Choo, F.K., The Optimum Thermal Design of Microchannel Heat Sinks, IEEE/CPMT Proc. 1st Electronic Packaging Technology Conf., 1997, pp. 123–129.Google Scholar
  15. 15.
    Liu, D. and Garimella, S.V., Analysis and Optimization of the Thermal Performance of Microchannel Heat Sinks, Int. J. Numer. Methods Heat Fluid Flow, 2005, vol. 15, no. 1, pp. 7–26, doi: 10.1108/09615530510571921.CrossRefMATHGoogle Scholar
  16. 16.
    Deng, B., Qi, Y.C., and Kim, N., An Improved Porous Medium Model for Microchannel Heat Sinks, Appl. Therm. Eng., 2010, vol. 30, pp. 2512–2517, doi: 10.1016/j.applthermaleng.2010.06.025.CrossRefGoogle Scholar
  17. 17.
    Li, J. and Kleinstreuer, C., Entropy Generation Analysis for Nanofluid Flow in Microchannels, J. Heat Transfer, 2011, vol. 132, pp. 122401-1–122041-8.Google Scholar
  18. 18.
    Ijam, A. and Saidur, R., Nanofluid as a Coolant for Electronic Devices (Cooling of Electronic Devices), Appl. Therm. Eng., 2012, vol. 32, pp. 76–82, doi: 10.1016/j.applthermaleng.2011.08.032.CrossRefGoogle Scholar
  19. 19.
    Hu, G. and Xu, S., Optimization Design of Microchannel Heat Sink Based on SQP Method and Numerical Simulation, IEEE Proc. Applied Superconductivity and Electromagnetic Devices, Chengdu, China, 2009, pp. 89–92.Google Scholar
  20. 20.
    Garimella, S.V., Singhal, V., and Liu, D., On-Chip Thermal Management with Microchannel Heat Sinks and Integrated Micropumps, Proc. IEEE, 2006, vol. 94, no. 8, pp. 1534–1548, doi: 10.1109/JPROC.2006.879801.CrossRefGoogle Scholar
  21. 21.
    Mohammed, H.A., Bhaskaran, G., Shuaib, N.H., and Saidur, R., Heat Transfer and Fluid Flow Characteristics in Microchannel Heat Exchanger Using Nanofluids: a Review, Renewable Sust. Energy Reviews, 2010, vol. 15, pp. 1502–1511.CrossRefGoogle Scholar
  22. 22.
    Choquette, S.F., Faghri, M., Charmchi, M., and Asako, Y., Optimum Design of Microchannel Heat Sinks. Microelectromechanical Systems (MEMS), Am. Soc.Mech. Engin., Dynamic Syst. Control, 1996, vol. 59, pp. 115–126.Google Scholar
  23. 23.
    Li, J. and Peterson G.P., Geometrical Optimization of a Micro Heat Sink with Liquid Flow, IEEE Tran. Components Packaging Tech., 2006, vol. 29, pp. 145–154, doi: 10.1109/TCAPT.2006.CrossRefMATHGoogle Scholar
  24. 24.
    Xie, X.L., Liu, Z.J., He, Y.L., and Tao, W.Q., Numerical Study of Laminar Heat Transfer and Pressure Drop Characteristics in a Water-Cooled Minichannel Heat Sink, Appl. Therm. Eng., 2009, vol. 29, pp. 64–74, doi: 10.1016/j.applthermaleng.2008.02.002.CrossRefGoogle Scholar
  25. 25.
    Husain, A. and Kim, K., Multiobjective Optimization of a Microchannel Heat Sink Using Evolutionary Algorithm, J. Heat Transfer, 2008, vol. 130, pp. 114505-1–114505-3.CrossRefGoogle Scholar
  26. 26.
    Husain, A. and Kim, K., Microchannel Heat Sinking: Analysis and Optimization, Proc. 4th Int. Symp. on Fluid Machinery and Fluid Engin., 2008, Beijing, China pp. 185–190.Google Scholar
  27. 27.
    Zitzler, E., Laumanns, M., and Thiele, L., SPEA2: Improving the Strength Pareto Evolutionary Algorithm, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, Techn. rep. TIK-Report 103, 2001.Google Scholar
  28. 28.
    Kim, S.J. and Kim, D., Forced Convection in Microstructures for Electronic Equipment Cooling. J. Heat Transfer, 1999, vol. 121, pp. 639–645.CrossRefGoogle Scholar
  29. 29.
    Copeland, D., Optimization of Parallel Plate Heat Sinks for Forced Convection, Sixteenth IEEE Semi-Therm Symp., 2000, pp. 266–272.Google Scholar
  30. 30.
    Rivas-Davalos, F. and Irving, M.R., An Approach Based on the Strength Pareto Evolutionary Algorithm 2 for Power Distribution System Planning, Techn. rep., 2004.Google Scholar
  31. 31.
    Zitzler, E. and Thiele, L., Multiobjective Evolutionary Algorithm: A Comparative Case Study and the Strength Pareto Approach, IEEE Trans. Evolutionary Computation, 1999, vol. 3, pp. 257–271.CrossRefGoogle Scholar
  32. 32.
    Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T., A Fast and Elitist Multi-Objective Genetic Algorithm for Multi-Objective Optimization, NSGA-2, Proc. Parallel Problem Solving from Nature VI Conf., Paris, 2002, pp. 849–858, doi: S1089-778X(02)04101-2.Google Scholar
  33. 33.
    Husain, A. and Kim, K.Y., Optimization of a Microchannel Heat Sink with Temperature Dependent Fluid Properties, Appl. Therm. Eng., 2008, vol. 28, pp. 1101–1107, doi: 10.1016/j.appithermaleng.2007.12.001.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Refrigeration and Air Conditioning Engineering Techniques Department, Erbil Technical Engineering CollegeErbil Polytechnic UniversityErbil, Iraqi KurdistanIraq
  2. 2.Faculty of Mechanical EngineeringUniversiti Teknologi MalaysiaSkudai, Johor BahruMalaysia
  3. 3.UTM Razak School of Engineering and Advanced TechnologyUniversiti Teknologi Malaysia, International CampusJalan Semarak, Kuala LumpurMalaysia

Personalised recommendations