Skip to main content
Log in

On the choice of correlations for calculating the heat transfer coefficient in binary gas mixtures

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Analytical review of numerous Russian and foreign sources of information on convective heat transfer to single-phase flows in circular pipes and rod bundles is represented. Formulas for calculation of heat transfer in circular pipes and rod bundles for different flow regimes of a binary gas mixture are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tournier, J.-M. and El-Genk, M.S., Properties of Noble Gases and Binary Mixtures for Closed Brayton Cycle Applications, Energy Conv. Manag., 2008, vol. 49, pp. 1882–1891.

    Article  Google Scholar 

  2. Dragunov, Yu.G., Smetannikov, V.P., Gabaraev, B.A., Orlov, A.N., Belyakov, M.S., and Derbenev, D.S., Analytical Review of Information on Thermophysical Properties of Helium-Xenon Mixture and Recommendations on Their Calculation, Preprint NIKIET ET-12/80, 2012.

    Google Scholar 

  3. El-Genk, M.S. and Tournier, J.-M., Noble Gases Binary Mixtures for Gas-Cooled Reactor Power Plants, Nucl. Engin. Design, 2008, vol. 238, pp. 1353–1372.

    Article  Google Scholar 

  4. Pierce, B.L., The Influence of Recent Heat Transfer Data on Gas Mixtures (He-Ar, H2-CO2) on Closed Cycle Gas Turbines, Trans. Am. Soc. Mech. Engrs., Ser. A, J. Engng. Pwr., 1981, vol. 103, pp. 114–117.

    Google Scholar 

  5. Petukhov, B.S., Genin, L.G., Kovalev, S.A., and Solovyev, S.L., Teploobmen v yadernykh energeticheskikh ustanovkakh (Heat Transfer at Nuclear Power Plants), 3d ed., Moscow: MEI, 2003.

    Google Scholar 

  6. Kirillov, P.L., Bobkov, V.P., Zhukov, A.V., and Yuryev, Yu.S., Spravochnik po teplogidravlicheskim raschetam v yadernoi energetike (Reference Book of Thermal Hydraulic Design in Nuclear Power Engineering), vol. 1, Teplogidravlicheskie protsessy v YaEU (Thermal Hydraulic Processes at NPP), Kirillov, P.L., Ed., Moscow: IzdAT, 2010.

  7. Zhukauskas, A.A., Konvektivnyi perenos v teploobmennikakh (Convective Transfer in Heat Exchangers), Moscow: Nauka, 1982.

    Google Scholar 

  8. Zhukov, A.V., Teplogidravlicheskii raschet reaktorov (Thermal-Hydraulic Calculation in Reactors), pt. 3, Heat Transfer and Temperature Fields of Fuel Elements in Regular Lattices (single-phase flow: experiment—calculation, methods, and formulas), 2006, vols. 1, 2, Obninsk: ONTI GNTs RF-FEI.

    Google Scholar 

  9. Mikheev, M.A., Mean Heat Transfer in Liquid Flows in Pipes, in Teplootdacha i teplovoe modelirovanie (Heat Transfer and Heat Simulation), Moscow: Izd-vo AN SSSR, 1959, pp. 122–137.

    Google Scholar 

  10. Petukhov, B.S., Teploobmen i soprotivlenie pri laminarnom techenii zhidrosti v trubakh (Heat Transfer and Resistance in Laminar Liquid Flows in Pipes), Moscow: Energiya, 1967.

    Google Scholar 

  11. Petukhov, B.S. and Genin, L.G., Heat Transfer in Pipes with Internal Heat Sources, Inzh.-Fiz. Zh., 1963, vol. 6, no. 4, pp. 3–8.

    Google Scholar 

  12. Petukhov, B.S. and Kirillov, V.V., Toward the Problem on Heat Transfer in Turbulent Liquid Flow in Pipes, Teploener., 1958, no. 4, pp. 63–68.

    Google Scholar 

  13. Petukhov, B.S. and Polyakov, A.F., Teploobmen pri smeshannoi turbulentnoi konvektsii (Heat Transfer in Mixed Turbulent Convection), Moscow: Nauka, 1986, p. 87.

    Google Scholar 

  14. Colburn, A.P., A Method of Correlating Forced Convection Heat Transfer Data and a Comparison with Fluid Friction, Trans. AlChE, 1933, pp. 174–210.

    Google Scholar 

  15. Dittus, F.W. and Boelter, L.M., Heat Transfer in Automobile Radiators of the Tubular Type, Univ. Calif., Pubs. Eng., 1930, vol. 2. p. 443.

    Google Scholar 

  16. Sieder, E.N. and Tate, C.E., Heat Transfer and Pressure Drop of Liquids in Tubes, Ind. Eng. Chem., 1936, vol. 28, pp. 1429–1436.

    Article  Google Scholar 

  17. von Arx, A.V. and Ceylah, I., Laminar Heat Transfer for Low Prandtl Number Gases, AIP Conf. Proc., 1991, vol. 217 pp. 719–722.

    Article  ADS  Google Scholar 

  18. Kirov, V.S., Kozhelupenko, Yu.D., and Tetelbaum, S.D., Toward the Problem on Calculating the Coefficient of Heat Transfer of Gas Helium-Hydrogen Mixtures, Inzh.-Fiz. Zh., 1974, vol. 26, no. 2, pp. 226–228.

    Google Scholar 

  19. Taylor, M.F. et al., Internal Forced Convection to Low-Prandtl-Number Gas Mixtures, Int. J. Heat Mass Transfer, 1988 vol. 31, no. 1, pp. 13–25.

    Article  ADS  Google Scholar 

  20. Liu, J. and Ahlers, G., Rayleigh-Benard Convection in Binary-Gas Mixtures: Thermophysical Properties and the Onset of Convection, Phys. Rev. E, 1977, vol. 55, no. 6.

    Google Scholar 

  21. Diaz, G. and Campo, A., Artificial Neural Networks to Correlate In-Tube Turbulent Forced Convection of Binary Gas Mixtures, Int. J. Thermal Sci., 2009, vol. 48, pp. 1392–1397.

    Article  Google Scholar 

  22. Sleicher, C.A. and Rouse, M.F., A Convenient Correlation for Heat Transfer to Constant and Variable Property Fluids in Turbulent Pipe Flow, Int. J. Heat Mass Transfer, 1975, vol. 18, pp. 677–683.

    Article  ADS  Google Scholar 

  23. Pickett, P.E., Taylor, M.F., and McEligot, D.M., Heated Turbulent Flows of Helium-Argon Mixtures in Tubes, Int. J. Heat Mass Transfer, 1979, vol. 22, pp. 705–719.

    Article  ADS  Google Scholar 

  24. Petukhov, B.S., Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties, Adv. Heat Transfer, 1970, vol. 6, pp. 503–564.

    Article  Google Scholar 

  25. Gnielinski, C.A., New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow, Int. Chem. Engnr., 1976, vol. 16, pp. 359–368.

    Google Scholar 

  26. Churchill, S.W., Comprehensive Correlating Equations for Heat, Mass and Momentum Transfer in Fully Developed Flow in Smooth Tubes, Int. Engng. Chem. Fundam., 1977, vol. 16, no. 1, pp. 109–116.

    Article  Google Scholar 

  27. Pickett, P.E., Heat and Momentum Transfer to Internal, Turbulent Flow of Helium-Argon Mixtures in Circular Tubes, MSE Report, Aero. Mech. Engng. Dept., Univ. Arizona, 1976, available from NTIS as Ad-A167290.

    Google Scholar 

  28. Taylor, M.F., Correlation of Local Heat Transfer Coefficients for Single-Phase Turbulent Flow of Hydrogen in Tubes with Temperature Ratios up to 23, NASA TN D-4332, 1968.

    Google Scholar 

  29. Cesna, B., Experimental Investigation of Heat Transfer of a Wire-Wrapped Bundle in a Longitudinal Flow, Energetika, 1998, no. 4.

    Google Scholar 

  30. Mark’oczy, G., Konvektive Wärmeubertragung in l ängsangestr ömten Stabbundeln bei Turbulenter Strömung, I Teil, Mittelwerte über den Stabumfang, Wärme- und Stoffübertragung, 1972, vol. 5, pp. 204–212.

    Google Scholar 

  31. Dragunov, Yu.G., Smetannikov, V.P., Gabaraev, B.A., Belyakov, M.S., and Kobzev, P.V., Analytical Review of Information on Heat Transfer Coefficients in Helium-Xenon Mixtures, Preprint NIKIET ET-12/81, 2012.

    Google Scholar 

  32. Notter, R.H. and Sleicher, C.A., A Solution to the Turbulent Graetz Problem, III, Fully Developed and Entry Region Heat Transfer Rates, Chem. Engng. Sci., 1972, vol. 27, pp. 2073–2093.

    Article  Google Scholar 

  33. Kays, W.M., Convective Heat and Mass Transfer, New York: McGraw-Hill, 1966.

    Google Scholar 

  34. Cesna, B., Hydrodynamics and Hydraulic Resistance in Rod Bundles with Counter Wire-Winding in Longitudinal Flow, Proc. 4th Minsk Int. Forum on Heat and Mass Transfer, Minsk, 2000, vol. 1, pp. 317–324.

    Google Scholar 

  35. Cesna, B., Experimental Investigation of Heat Transfer of a Wire-Wrapped Bundle in a Longitudinal Flow, Energetika, 1998, no. 4, pp. 37–42.

    Google Scholar 

  36. Cesna, B., Experimental and Theoretical Investigation of the Mixing Coefficient of a Rod Bundle with Wire-Wrapped Tubes in Longitudinal Flow, Energetika, 1999, no. 2, pp. 2–12.

    Google Scholar 

  37. Poshkas, P. and Vilemas, Yu., Heat Transfer and Hydrodynamics of Flows in Curved Channels and Bundles of Helix Pipes, Energetika, 1996, no. 2, pp. 58–67.

    Google Scholar 

  38. Dzyubenko, B.V. and Ievlev, V.M., Heat Transfer and Hydraulic Resistance in the Tube Space of Heat Exchanger with a Swirl Flow, Izv. AN SSSR, Energ. Transport, 1980, no. 5, pp. 117–125.

    Google Scholar 

  39. Ushakov, P.A., Zhukov, A.V., and Titov, P.A., Generalization of Experimental Data on Heat Transfer to Water in Staggered Rod Bundles, Preprint FEI-526, Obninsk, 1974.

    Google Scholar 

  40. Ain, E.M. and Puchkov, P.I., Heat Transfer and Hydraulic Resistance of Gas-Cooled Bundles of Smooth Rods, Energomashinostroenie, 1964, no. 11, pp. 21–22.

    Google Scholar 

  41. Sinyavskii, V.F., Savanin, N.K., Bobkov, V.P., and Ibragimov, M.Kh., Heat Transfer in Turbulent Flow of Different Heat-Transfer Materials in Channels of a Triangle Lattice of Cylindrical Fuel Elements, Preprint FEI-448, Obninsk, 1973.

    Google Scholar 

  42. Lin, C.X. and Ebadian, M.A., Developing Turbulent Convective Heat Transfer in Helix Pipes, Int. J. Heat Mass Transfer, 1997 vol. 40, no. 16, pp. 3861–3873.

    Article  MATH  Google Scholar 

  43. Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B., Molecular Theory of Gases and Liquids, New York: Wiley, 1964.

    Google Scholar 

  44. Giacobbe, F.W., J. Acoust. Soc. Am., 1994, vol. 96, p. 3568.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Gabaraev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dragunov, Y.G., Smetannikov, V.P., Gabaraev, B.A. et al. On the choice of correlations for calculating the heat transfer coefficient in binary gas mixtures. J. Engin. Thermophys. 22, 30–42 (2013). https://doi.org/10.1134/S1810232813010050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232813010050

Keywords

Navigation