Skip to main content
Log in

On calculation of the transport coefficients and thermodynamic properties of a helium-xenon gas mixture

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Calculation and experimental investigations of the transport coefficients and thermodynamic properties of a helium-xenonmixture are reviewed. It seems that a combination of approaches of the Chapman-Enskog kinetic theory and the theory of corresponding states of dense gas is most promising. This combined approach results in semiempirical relationships for calculating the density, coefficient of dynamic viscosity, thermal conductivity coefficient, specific heat capacity at constant pressure, and specific heat capacity at constant volume. These relationships consider the influence of the temperature and pressure, and also the ratio of mixture components. For a fixed ratio of mixture components, the calculation algorithms constructed by the authors with the use of such semiempirical relationships are in good agreement with the engineering calculation procedure in which the influence of mixture components is not considered, whereas the influence of temperature and pressure is considered by simple formulas in a form of polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ratnikov, E.F. and Tetelbaum, S.D., Gazy kak teplonositeli i rabochie tela (Gases as Heat-Transfer Materials and WorkingMedia), Moscow: Atomizdat, 1978.

    Google Scholar 

  2. Bretsnaider, S., Svoistva gazov i zhidkostei (inzhenernye metody rascheta) (Gas and Liquid Properties (engineering calculations)), Moscow-Leningrad: Khimiya, 1966.

    Google Scholar 

  3. Haire, M.E. and Vargo, D.D., Review of Helium and Xenon Pure Component and Mixture Transport Properties and Recommendation of Estimating Approach for Project Prometheus (Viscosity and Thermal Conductivity), CP880, Space Technology and Applications International Forum-STAIF, 2007.

    Google Scholar 

  4. Tournier, J-M.P. and El-Glenk, M.S., Properties of Noble Gases and Binary Mixtures for Closed Brayton Cycle Applications, Energy Convers. Manag., 2008, no. 49, pp. 469–492.

    Google Scholar 

  5. Hashimoto, K., Matsunaga, N., Nagashima, N., and Mito, K., Determination of the Thermal Conductivity of Xenon-Helium Mixtures at High Temperatures by the Shock-Tube Method, Int. J. Therm., 1992, vol. 13, no. 2.

    Google Scholar 

  6. El-Glenk, M.S. and Tournier, J-M.P., Noble Gas Mixtures for Gas-Cooled Reactor Power Plants, Nucl. Engin. Design, 2008, vol. 238, no. 6, pp. 1353–1372.

    Article  Google Scholar 

  7. Mashtovskii, I., Thermal Conductivity of Helium and Xenon Mixtures at High Temperatures, Inzh.-Phiz. Zh., 1977, vol. 33, no. 4, pp. 635–641.

    Google Scholar 

  8. Johnson, P.L., A Method for Calculating Viscosity and Thermal Conductivity of a Helium-Xenon Gas Mixture, NASA/CR-2006-214394, November, 2006.

    Google Scholar 

  9. Karevskii, A.V., Vybor rabochego tela kontura gazoturbinnogo preobrazovaniya energodvigatel’noi ustanovki megavattnogo urovnya mochshnosti (Choosing a Working Medium of the Gas-Turbine Conversion Circuit at an MW Nuclear Power Engine Plant, Tsentr Keldysha GNTs FGUP, Moscow, 2010.

    Google Scholar 

  10. Soldatov, V.A., Vliyanie fizicheskikh svoistv teplonositelya na kharakteristiki A3 reaktornoi ustanovki megavattnogo klassa (The Influence of Physical Properties of the Heat-Transfer Material on the Characteristics of A3 Reactor Plant of MW Class), Kurchatovskii Institut RNTs, Moscow, 2010.

    Google Scholar 

  11. Vagraftik, N.B., Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (Reference Book of Thermophysical Properties of Gases and Fluids), Moscow: Nauka, 1972.

    Google Scholar 

  12. El-Glenk, M.S. and Tournier, J-M.P., Noble Gas Mixtures for Closed-Brayton-Cycle Space Reactor Power Systems, J. Propuls. Power, 2007, vol. 23, no. 4, pp. 863–873.

    Article  Google Scholar 

  13. Thornton, E., Viscosity and Thermal Conductivity of Binary Gas Mixtures: Xenon-Krypton, Xenon-Argon, Xenon-Neon and Xenon-Helium, Proc. Phys. Soc. (London), 1960, vol. 76, pp. 104–112.

    Article  ADS  Google Scholar 

  14. Fastovskii, V.G., Rovinskii, A.E., and Petrovskii, Yu.V., Inertnye gazy (Noble Gases), 2nd ed., Atomizdat, 1972.

    Google Scholar 

  15. Kirov, V.S., Kozhelupenko, Yu.D., and Tetelbaum, S.D., Toward the Problem on Calculating the Heat Transfer Coefficient of Gas Mixtures with Helium and Hydrogen, Inzh.-Fiz. Zh., 1974, vol. 26, no. 2, pp. 226–228.

    Google Scholar 

  16. Brokaw, R.S., Approximate Formulas for Viscosity and Thermal Conductivity of Gas Mixtures, NASA Tech. Note (NASA TN D-2502), 1974.

    Google Scholar 

  17. Nedostup, V.I., Gal’kevich, E.P., and Kaminskii, E.S., Termodinamicheskie svoistva gazov pri vysokikh temperaturakh i davleniyakh (Thermodynamic Gas Properties at High Temperatures and Pressures), Kiev: Naukova Dumka, 1990.

    Google Scholar 

  18. Tsederberg, N.V., Popov, V.N., and Morozova, N.A., Termodinamicheskie i teplofizicheskie svoistva geliya (Thermodynamic and Thermophysical Properties of Helium), Atomizdat, 1969.

    Google Scholar 

  19. Teplofizicheskie svoistvamaterialov yadernoi tekhniki (Thermophysical Properties of Nuclear Engineering Materials), Kirillov, P.L., Ed., Moscow: IzdAT, 2007.

    Google Scholar 

  20. Shashkov, A.G. and Abramenko, T.V., Svoistva perenosa gazov i zhidkostei (Transport Properties of Gases and Fluids), Minsk: Nauka i Tekhnika, 1973.

    Google Scholar 

  21. Tsederberg, N.V., Teploprovodnost’ gazov i zhidkostei (Thermal Conductivity of Gases and Fluids), Moscow-Leningrad: Gosenergoizdat, 1963.

    Google Scholar 

  22. Bazarov, I.P., Termodinamika (Thermodynamics), Moscow: Vysshaya Shkola, 1991.

    Google Scholar 

  23. Tekhnicheskaya termodinamika (Engineering Thermodynamics), Krutov, V.I., Ed., Moscow: Vysshaya Shkola, 1981.

    Google Scholar 

  24. Tekhnicheskaya termodinamika (Engineering Thermodynamics), Krutov, V.I., Ed., Moscow: Vysshaya Shkola, 1971.

    Google Scholar 

  25. Rabinovich, V.A., Vasserman, A.A., Nedostup, V.I., and Veksler, L.S., Teplofizicheskie svoistva neona, argona, kriptona i ksenona (Thermophysical Properties of Neon, Argon, Crypton, and Xenon), Moscow: Izdatel’stvo Standartov, 1976.

    Google Scholar 

  26. Zubarev, V.N., Kozlov, A.D., Kuznetsov, V.M., et al., Teplofizicheskie svoistva tekhnicheski vazhnykh gazov pri vysokikh temperaturakh i davleniyakh (Thermophysical Properties of Technically Important Gases at High Temperatures and Pressures), Moscow: Energoatomizdat, 1989.

    Google Scholar 

  27. Rabinovich, V.A., Vasserman, A.A., and Zimina, N.Kh., Dinamicheskaya vyazkost’ i teploprovodnost’ geliya, neona, argona, kriptona i ksenona pri atmosfernom davlenii v intervale temperatur ot normal’nykh tochek kipeniya do 2500 K (Dynamic Viscosity and Thermal Conductivity of Helium, Neon, Argon, Crypton, and Xenon at Atmospheric Pressure and in the Temperature Range from Normal Boiling Points to 2500 K), Tablitsy standartnykh spravochnykh dannykh (Tables of Standard Reference Data), GSSSD 17-81, Moscow: Izdatel’stvo Standartov, 1982.

    Google Scholar 

  28. Stepchikov, A.A., Zadachnik po prikladnoi gidrogazovoi dinamike (Book of Problems on Applied Fluid and Gas Dynamics), Moscow: Moscow Aviation Institute, 1974.

    Google Scholar 

  29. Brokaw, R.S., Alignment Charts for Transport Properties, Viscosity, Thermal Conductivity, and Diffusion Coefficients for Nonpolar Gases and Gas Mixtures at Low Density, NASA TR R-81, 1961.

    Google Scholar 

  30. Vanco, M.R., Analytical Comparison of Relative Heat-Transfer Coefficients and Pressure Drops of Inert Gases and Their Binary Mixtures, NASA TN D-2677, 1965.

    Google Scholar 

  31. Huber, M. and Hanley, H., The Corresponding-State Principle: Dense Fluids, in Transport Properties of Fluids, Millat, J., Dymond, J., and Nieto de Castro, C., Eds., Cambridge University Press, 1996, pp. 283–295.

    Chapter  Google Scholar 

  32. Dragunov, Yu.G., Smetannikov, V.P., Gabaraev, G.A., Orlov, A.N., Belyakov, M.S., and Derbenev, D.S., Analytical Review of Information on Thermophysical Properties of a Helium-Xenon Gas Mixture with Recommendations on Their Calculation, Preprint of NIKIET, ET-12/80, 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Gabaraev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dragunov, Y.G., Smetannikov, V.P., Gabaraev, B.A. et al. On calculation of the transport coefficients and thermodynamic properties of a helium-xenon gas mixture. J. Engin. Thermophys. 22, 21–29 (2013). https://doi.org/10.1134/S1810232813010049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232813010049

Keywords

Navigation