Skip to main content
Log in

Effect of diluent gas on silicon film deposition from a free jet of monosilane-diluent mixture activated by electron-beam plasma

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Thin silicon films were synthesized by the gas-jet electron beam plasma chemical vapor deposition method from monosilane-argon, monosilane-argon-helium, and monosilane-argon-hydrogen mixtures. Addition of argon to the argon-silane mixture increased the deposition rate of silicon films, whereas addition of helium and hydrogen to the same mixture decreased the growth rate. It is shown that the process of silicon film deposition by this method from argon-monosilane mixture is primarily governed by fast secondary electrons, and argon dilution of mixture leads to increasing concentration of fast secondary electrons and increasing deposition rate of silicon films. Dilution of the initial mixture with helium or hydrogen causes a decrease in the deposition rate either due to gas-dynamic behavior of the supersonic jet of the mixture of light and heavy gases, or due to the etching effect of metastable helium atoms or hydrogen atoms on the surface of the growing silicon film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aberle, A.G., Thin Solid Films, 2009, vol. 517, p. 4706.

    Article  ADS  Google Scholar 

  2. Singh, R., J. Nanophot., 2009, vol. 3, p. 032503.

    Article  Google Scholar 

  3. Yan, B., Yue, G., Xu, X., Yang, J., and Guha, S., Phys. Stat. Sol. A, 2010, vol. 207, p. 671.

    Article  ADS  Google Scholar 

  4. Rath, J.R., Solar Energy Mat. Solar Cells, 2003, vol. 76, p. 431.

    Article  Google Scholar 

  5. Sharafutdinov, R.G., Skrinnikov, A.V., Parakhnevich, A.V., et al., J. Appl. Phys., 1996, vol. 79, p. 7274.

    Article  ADS  Google Scholar 

  6. Sharafutdinov, R.G., Khmel, S.Ya., Shchukin, V.G., et al., Solar Energy Mat. Solar Cells, 2005, vol. 89, p. 99.

    Article  Google Scholar 

  7. Burdovitsin, V. and Oks, E., Rev. Sci. Instrum., 1999, vol. 70, p. 2975.

    Article  ADS  Google Scholar 

  8. Sukhinin, G.I., Fedoseev, A.V., and Khmel, S.Ya., Plasma Phys. Rep., 2008, vol. 34, no. 1, p. 60.

    Article  ADS  Google Scholar 

  9. Konstantinov, V.O. and Khmel, S.Ya., J. Appl. Mech. Techn. Phys., 2007, vol. 48, no. 1, p. 1.

    Article  ADS  Google Scholar 

  10. Khmel, S.Ya., Fedoseev, A.V., and Sukhinin, G.I., Proc. Int. Symp. on Plasma Chemistry (ISPC-19), von Keudell, A., Winter, J., Boke, M., and Schulz von der Gathen, V., Eds., Bochum, Ruhr-Univ. Bochum, Germany, 2009, p. 376, www.ispc-conference.org.

    Google Scholar 

  11. Khmel, S.Ya., Fedoseev, A.V., and Sukhinin G.I., Proc. 10th Int. Conf. on Modification of Materials with Particle Beams and Plasma Flows, Tomsk, Russia, IOA SB RAS, 2010, p. 504.

    Google Scholar 

  12. Dulov, V.G. and Lukyanov, G.A., Gazodinamika protsessov istecheniya (Gas Dynamics of Flow Processes), Novosibirsk: Nauka, 1984.

    MATH  Google Scholar 

  13. Funde, A.M., Bakr, N.A., Kamble, D.K., et al., Solar Energy Mat. Solar Cells, 2008, vol. 92, p. 1217.

    Article  Google Scholar 

  14. Chen, C., Qiu, S., Liu, C., et al., Plasma Sci. Technol., 2009, vol. 11, no. 3, p. 297.

    Article  ADS  Google Scholar 

  15. Matsuda, A., J. Non-Cryst. Solids, 2004, vols. 338–340, p. 1.

    Article  MathSciNet  Google Scholar 

  16. Bhattacharya, K. and Das, D., J. Appl. Phys., 2008, vol. 41, p. 155420.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Khmel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khmel, S.Y. Effect of diluent gas on silicon film deposition from a free jet of monosilane-diluent mixture activated by electron-beam plasma. J. Engin. Thermophys. 21, 52–59 (2012). https://doi.org/10.1134/S1810232812010055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232812010055

Keywords

Navigation