Journal of Engineering Thermophysics

, Volume 21, Issue 1, pp 52–59 | Cite as

Effect of diluent gas on silicon film deposition from a free jet of monosilane-diluent mixture activated by electron-beam plasma

  • S. Ya. Khmel


Thin silicon films were synthesized by the gas-jet electron beam plasma chemical vapor deposition method from monosilane-argon, monosilane-argon-helium, and monosilane-argon-hydrogen mixtures. Addition of argon to the argon-silane mixture increased the deposition rate of silicon films, whereas addition of helium and hydrogen to the same mixture decreased the growth rate. It is shown that the process of silicon film deposition by this method from argon-monosilane mixture is primarily governed by fast secondary electrons, and argon dilution of mixture leads to increasing concentration of fast secondary electrons and increasing deposition rate of silicon films. Dilution of the initial mixture with helium or hydrogen causes a decrease in the deposition rate either due to gas-dynamic behavior of the supersonic jet of the mixture of light and heavy gases, or due to the etching effect of metastable helium atoms or hydrogen atoms on the surface of the growing silicon film.


Solar Cell Helium Atom Argon Atom Engineer THERMOPHYSICS Monosilane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aberle, A.G., Thin Solid Films, 2009, vol. 517, p. 4706.ADSCrossRefGoogle Scholar
  2. 2.
    Singh, R., J. Nanophot., 2009, vol. 3, p. 032503.CrossRefGoogle Scholar
  3. 3.
    Yan, B., Yue, G., Xu, X., Yang, J., and Guha, S., Phys. Stat. Sol. A, 2010, vol. 207, p. 671.ADSCrossRefGoogle Scholar
  4. 4.
    Rath, J.R., Solar Energy Mat. Solar Cells, 2003, vol. 76, p. 431.CrossRefGoogle Scholar
  5. 5.
    Sharafutdinov, R.G., Skrinnikov, A.V., Parakhnevich, A.V., et al., J. Appl. Phys., 1996, vol. 79, p. 7274.ADSCrossRefGoogle Scholar
  6. 6.
    Sharafutdinov, R.G., Khmel, S.Ya., Shchukin, V.G., et al., Solar Energy Mat. Solar Cells, 2005, vol. 89, p. 99.CrossRefGoogle Scholar
  7. 7.
    Burdovitsin, V. and Oks, E., Rev. Sci. Instrum., 1999, vol. 70, p. 2975.ADSCrossRefGoogle Scholar
  8. 8.
    Sukhinin, G.I., Fedoseev, A.V., and Khmel, S.Ya., Plasma Phys. Rep., 2008, vol. 34, no. 1, p. 60.ADSCrossRefGoogle Scholar
  9. 9.
    Konstantinov, V.O. and Khmel, S.Ya., J. Appl. Mech. Techn. Phys., 2007, vol. 48, no. 1, p. 1.ADSCrossRefGoogle Scholar
  10. 10.
    Khmel, S.Ya., Fedoseev, A.V., and Sukhinin, G.I., Proc. Int. Symp. on Plasma Chemistry (ISPC-19), von Keudell, A., Winter, J., Boke, M., and Schulz von der Gathen, V., Eds., Bochum, Ruhr-Univ. Bochum, Germany, 2009, p. 376, Scholar
  11. 11.
    Khmel, S.Ya., Fedoseev, A.V., and Sukhinin G.I., Proc. 10th Int. Conf. on Modification of Materials with Particle Beams and Plasma Flows, Tomsk, Russia, IOA SB RAS, 2010, p. 504.Google Scholar
  12. 12.
    Dulov, V.G. and Lukyanov, G.A., Gazodinamika protsessov istecheniya (Gas Dynamics of Flow Processes), Novosibirsk: Nauka, 1984.MATHGoogle Scholar
  13. 13.
    Funde, A.M., Bakr, N.A., Kamble, D.K., et al., Solar Energy Mat. Solar Cells, 2008, vol. 92, p. 1217.CrossRefGoogle Scholar
  14. 14.
    Chen, C., Qiu, S., Liu, C., et al., Plasma Sci. Technol., 2009, vol. 11, no. 3, p. 297.ADSCrossRefGoogle Scholar
  15. 15.
    Matsuda, A., J. Non-Cryst. Solids, 2004, vols. 338–340, p. 1.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Bhattacharya, K. and Das, D., J. Appl. Phys., 2008, vol. 41, p. 155420.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Kutateladze Institute of Thermophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations