Journal of Engineering Thermophysics

, Volume 20, Issue 4, pp 487–500 | Cite as

Particle swarm modeling of vapor-liquid equilibrium data of binary systems containing CO2 + imidazolium ionic liquids based on bis[(trifluoromethyl)sulfonyl]imide anion

  • L. O. Palma Chilla
  • J. A. Lazzús
  • A. A. Pérez Ponce


Based on particle swarm optimization (PSO), a thermodynamic modeling for the vapor-liquid equilibrium of binary mixtures of carbon dioxide with ionic liquids is presented. The Peng-Robinson equation of state with the Wong-Sandler mixing rules is used to evaluate the fugacity coefficient of the systems. Simulations are carried out in five systems containing 1-alkyl-3-methylimidazolium ionic liquids based on bis[(trifluoromethyl)sulfonyl]imide anion. Then, PSO algorithm was used to minimize the difference between calculated and experimental bubble pressure, and calculate the interaction parameters and the excess Gibbs free energy for all systems used. The results show that the bubble pressures were correlated with low deviations between experimental and calculated values. These deviations show that the PSO algorithm is the preferable method to optimize the interaction parameters of the phase equilibria of binary systems of supercritical carbon dioxide with ionic liquids, and can be used for other similar systems.


Ionic Liquid Engineer THERMOPHYSICS Particle Swarm Optimization Method Engineering THERMOPHYSICS Excess Gibbs Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gardas, R.L., Freire, M.G., Carvalho, P.J., Marrucho, I.M., Fonseca, I.M., Ferreira, A.G., and Coutinho, J.A., High-Pressure Densities and Derived Thermodynamic Properties of Imidazolium-Based Ionic Liquids, J. Chem. Eng. Data, 2007, vol. 52, pp. 80–88.CrossRefGoogle Scholar
  2. 2.
    Lazzús, J.A., Estimation of Density as a Function of Temperature and Pressure for Imidazolium-Based Ionic Liquids Using a Multilayer Net with Particle Swarm Optimization, Int. J. Therm., 2009, vol. 30, pp. 883–909.CrossRefADSGoogle Scholar
  3. 3.
    Blanchard, L.A., Hancu, D., Beckman, E.J., and Brennecke, J.F., Green Processing Using Ionic Liquids and CO2, Nature, 1999, vol. 399, pp. 28–29.CrossRefADSGoogle Scholar
  4. 4.
    Carvalho, P.J., Álvarez, V.H., Machado, J.J., Pauly, J., Daridon, J., Marrucho, I.M., Aznar, M., and Coutinho, J.A., High-Pressure Phase Behavior of Carbon Dioxide in 1-Alkyl-3-Methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids, J. Supercrit. Fluids, 2009, vol. 48, pp. 99–107.CrossRefGoogle Scholar
  5. 5.
    Scurto, A., Aki, S., and Brennecke, J., CO2 as a Separation Switch for Ionic Liquid/Organic Mixtures, JACS, 2002, vol. 124, pp. 10276–10277.CrossRefGoogle Scholar
  6. 6.
    Scurto, A.M., Aki, S.N., and Brennecke, J.F., Carbon Dioxide Induced Separation of Ionic Liquids and Water, Chem. Commun., 2003, vol. 10, pp. 572–573.CrossRefGoogle Scholar
  7. 7.
    Álvarez, V.H. and Aznar, M., Application of a Thermodynamic Consistency Test to Binary Mixtures Containing an Ionic Liquid, Open Thermodyn. J., 2008, vol. 2, pp. 25–38.CrossRefGoogle Scholar
  8. 8.
    Hong, G., Jacquemin, J., Deetlefs, M., Hardacre, C., Husson, P., and Costa Gomes, M.F., Solubility of Carbon Dioxide and Ethane in Three Ionic Liquids Based on the Bis{(trifluoromethyl)sulfonyl}imide Anion, Fluid Phase Equilib., 2007, vol. 257, pp. 27–34.CrossRefGoogle Scholar
  9. 9.
    Bogel-Łukasik, R., Matkowska, D., Bogel-Łukasik, E., Hofman, T., Isothermal Vapor-Liquid Equilibria in the Binary and Ternary Systems Consisting of an Ionic Liquid, 1-Propanol and CO2, Fluid Phase Equilib., 2010, vol. 293, pp. 168–174.CrossRefGoogle Scholar
  10. 10.
    Yang, J., Peng, C., Liu, H., and Hu, Y., Calculation of Vapor-Liquid and Liquid-Liquid Phase Equilibria for Systems Containing Ionic Liquids Using a Lattice Model, Ind. Eng. Chem. Res., 2006, vol. 45, pp. 6811–6817.CrossRefGoogle Scholar
  11. 11.
    Lazzús, J.A., Prediction of Solid Vapor Pressures for Organic and Inorganic Compounds Using a Neural Network, Thermochim. Acta, 2009, vol. 489, pp. 53–62.CrossRefGoogle Scholar
  12. 12.
    Lazzús, J.A., Estimation of Solid Vapor Pressure from CO2 + Biomolecules Systems Using a PSO Algorithm, J. Supercrit. Fluids, 2010, vol. 51, pp. 312–318.CrossRefGoogle Scholar
  13. 13.
    Lazzús, J.A., Prediction of Sublimation Pressures from SCO2 + Hydrocarbon Systems Using a Particle Swarm Optimization, J. Eng. Therm., 2009, vol. 18, pp. 306–314.CrossRefGoogle Scholar
  14. 14.
    Kennedy, J., Eberhart, R.C., and Shi, Y., Swarm Intelligence, USA: Academic Press, 2001.Google Scholar
  15. 15.
    Schwaab, M., Chalbaud, E., Monteiro, J.L., and Pinto, J.C., Nonlinear Parameter Estimation through Particle Swarm Optimization, Chem. Eng. Sci., 2008, vol. 63, pp. 1542–1552.CrossRefGoogle Scholar
  16. 16.
    Gopi, E.S., Algorithm Collections for Digital Signal Processing Applications Using Matlab, The Netherlands: Springer, 2007.MATHGoogle Scholar
  17. 17.
    Orbey, H. and Sandler, S.I., Modeling Vapor-Liquid Equilibria. Cubic Equations of State and Their Mixing Rules, USA: Cambridge Univ. Press, 1998.Google Scholar
  18. 18.
    Peng, D.Y. and Robinson, D.B., A New Two-Constant Equation of State, Ind. Eng. Chem. Fundam., 1976, vol. 15, pp. 59–64.CrossRefMATHGoogle Scholar
  19. 19.
    Wong, D.S. and Sandler, S.I., A Theoretically Correct Mixing Rule for Cubic Equations of State, AIChE J., 1992, vol. 38, pp. 671–680.CrossRefGoogle Scholar
  20. 20.
    Walas, S.M., Phase Equilibria in Chemical Engineering, USA: Butterworth Publishing, 1985.Google Scholar
  21. 21.
    Jiang, Y., Hu, T., Huang, C.C., and Wu, X., An Improved Particle Swarm Optimization Algorithm, Appl. Math. Comput., 2007, vol. 193, pp. 231–239.CrossRefMATHGoogle Scholar
  22. 22.
    Da, T. and Xiurun, G., An Improved PSO-Based ANN with Simulated Annealing Technique, Neurocomputing, 2005, vol. 63, pp. 527–533.CrossRefGoogle Scholar
  23. 23.
    Shi, Y. and Eberhart, R.C., A Modified Particle Swarm Optimizer, Proc. IEEE Int. Conf. on Evolutionary Computation, Piscataway: IEEE Press, pp. 69–73, 1998.Google Scholar
  24. 24.
    Valderrama, J.O. and Robles, P.A., Critical Properties, Normal Boiling Temperatures, and Acentric Factors of Fifty Ionic Liquids, Ind. Eng. Chem. Res., 2007, vol. 46, pp. 1338–1344.CrossRefGoogle Scholar
  25. 25.
    Valderrama, J.O., Sanga, W.W., and Lazzús, J.A., Critical Properties, Normal Boiling Temperatures, and Acentric Factors of Another 200 Ionic Liquids, Ind. Eng. Chem. Res., 2008, vol. 47, pp. 1318–1330.CrossRefGoogle Scholar
  26. 26.
    Daubert, T.E., Danner, R.P., Sibul, H.M., and Stebbins, C.C., Physical and Thermodynamic Properties of Pure Chemicals. Data Compilation, London: Taylor & Francis, 1996.Google Scholar
  27. 27.
    Huang, J., Riisager, A., Berg, R.W., and Fehrmann, R., Tuning Ionic Liquids for High Gas Solubility and Reverse Gas Sorption, J. Mol. Catal. A, 2008, vol. 279, pp. 170–176.CrossRefGoogle Scholar
  28. 28.
    Aki, S.N., Mellein, B.R., Saurer, E.M., and Brennecke, J.F., High-Pressure Phase Behavior of Carbon Dioxide with Imidazolium-Based Ionic Liquids, J. Phys. Chem. B, 2004, vol. 108, pp. 20355–20365.CrossRefGoogle Scholar
  29. 29.
    Reilly, M., Computer Programs for Chemical Engineering Education, Texas: Sterling Swift, 1972.Google Scholar
  30. 30.
    Vittal Prasad, T.E., Sravani, Y., Sri Ranjita, V., and Prasad, D.H., Excess Gibbs’ Energies of Selected Binary Mixtures Formed by N,N-Dimethyl Formamide at 95.5 kPa, Fluid Phase Equilib., 2006, vol. 249, pp. 49–54.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • L. O. Palma Chilla
    • 1
  • J. A. Lazzús
    • 1
  • A. A. Pérez Ponce
    • 1
  1. 1.Departamento de FísicaUniversidad de La SerenaLa SerenaChile

Personalised recommendations