Computer calculations for thermal behavior of Na2CO3-Li2CO3 melt

  • N. M. Barbin
  • D. I. Terentiev
  • S. G. Alekseyev
Article

Abstract

The thermal behavior of Na2CO3+Li2CO3 melt is studied by the method of thermodynamic simulation. The equilibrium compositions of the gas and salt phases are calculated at different temperatures in the initial argon atmosphere. Basic trends of the variation in the compositions of the melts and the gas phase above the melts in the presence of carbon are determined. The obtained results characterizing the stability of carbonate components in the melt are analyzed.

Keywords

Thermal Behavior Computer Calculation Thermodynamic System Individual Substance Oxygen Anion 

References

  1. 1.
    Selman, J.R. and Maru, H.C., High-Temperature Molten Carbonate Fuel Cell, in Advances in Molten Salt Chemistry, New York: Plenum, 1982.Google Scholar
  2. 2.
    Predtechensky, M.R., Varlamov, Yu.D., and Uliyankin, S.H., Electrochem., 2010, no. 8, pp. 927–933.Google Scholar
  3. 3.
    Barbin, N.M., Kazantsev, G.F., and Vatolin, N.A., Pererabotka vtorichnogo svintsovogo syr’ya v ionnykh solevykh rasplavakh (Processing of Lead Row Materials in Ion Salt Melts), Ekaterinburg: UrORAN, 2002.Google Scholar
  4. 4.
    Barbin, N.M., Kazantsev, G.F., Moiseev, G.K., and Vatolin, N.A., Inorg. Mat., 2002, vol. 38, pp. 12–16.CrossRefGoogle Scholar
  5. 5.
    Delimarskii, Yu.K. and Barchuk, L.P. Prikladnaya khimiya ionnykh rasplavov (Applied Chemistry of Ion Melts), Kiev: Naukova Dumka, 1988.Google Scholar
  6. 6.
    Moiseev, G.K., Vyatkin, G.P., Barbin, N.M., and Kazantsev, G.F., Primenenie termodinamicheskogo modelirovaniya dlya izucheniya ionnykh rasplavov (Thermodynamic Modeling in Application to Studying Ion Melts), Chelyabinsk: South Ural State Univ., 2002.Google Scholar
  7. 7.
    Sinyarev, G.B., Vatolin, N.A., Trysov, B.G., and Moiseev, G.K., Primenenie EVM dlya termodinamicheskikh raschetov metallurgicheskikh protsessov (Application of Computers to Thermodynamic Calculations of Metallurgical Processes), Moscow: Nauka, 1982.Google Scholar
  8. 8.
    Vatolin, N.A., Moiseev, G.K., and Trysov, B.G., Termodinamicheskoe modelirovanie v vusokotemperaturnykh neorganicheskikh sistemakh (Thermodynamic Simulation in High-Temperature Inorganic Systems), Moscow: Metallurgiya, 1994.Google Scholar
  9. 9.
    Moiseev, G.K., Marshuk, L.A., and Vatolin, N.A., Trudy Vsesoyuznoi konf. “Fiziko-khimicheskie osnovy metallurgicheskikh protsessov” (Proc. All-Union Conf. on Physical and Chemical Bases of Metallurgic Processes), Moscow: Chermetinformatsiya, pt. 1, p. 23, 1991.Google Scholar
  10. 10.
  11. 11.
    Vatolin, N.A., Moiseev, G.K., and Trusov, B.G., Termodinamicheskoe modelirovanie v vysokotemperaturnykh neorganicheskikh sistemakh (Thermodynamic Simulation in High-Temperature Inorganic Systems), Moscow: Metallurgiya, 1994.Google Scholar
  12. 12.
    Alemasov, V.E., Dregalin, A.F., and Tishin, A.P., Termodinamicheskie i termofizicheskie svoistva produktov sgoraniya (Thermodynamic and Thermophysical Properties of Combustion Products), Moscow: Nauka, 1982.Google Scholar
  13. 13.
    Moiseev, G.K., Vyatkin, G.P., and Barbin, N.M., Ispolzovanie termodinamicheskogo modelirovaniya dlya issledovaniya vzaimodeistvii ionnykh rasplavov (Use of Thermodynamic Simulation for Investigations into Interactions Involving Ionic Melts), Chelyabinsk: South Ural State Univ., 2002.Google Scholar
  14. 14.
    Voskresenskya, N.K., Evseeva, N.N., and Beryl’, S.I., Spravochnik po plavkosti sistem iz bezvodnykh neorganicheskikh solei (Handbook of Fusibility of Systems of Waterless Inorganic Systems), Moscow: AN SSSR, pt. 1, 1961.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • N. M. Barbin
    • 1
    • 2
  • D. I. Terentiev
    • 1
  • S. G. Alekseyev
    • 1
  1. 1.Ural Institute of State Fire Fighting ServiceEkaterinburgRussia
  2. 2.Institute of High-Temperature ElectrochemistryEkaterinburgRussia

Personalised recommendations