Journal of Engineering Thermophysics

, Volume 20, Issue 1, pp 42–54 | Cite as

Mass spectrometry of molecules and radicals in glow discharge plasma

  • A. E. Belikov
  • S. Z. Sakhapov
  • M. A. Smith
  • G. Tikhonov


The article represents a method and equipment developed for mass spectrometric analysis of plasma, that is, for measurement of concentration of atoms and molecules, and their fragments, including free radicals. A compact and inexpensive mass spectrometer is based on a quadrupole residual gas analyzer (RGA-200, Stanford Research Systems). The design of the two-section differential pumping chamber makes it possible to bring the mass-spectrometer analyzer to the entrance diaphragm to a distance of 40 mm in order to measure quick reacting and easily condensed particles. The equipment was used for analyzing the composition of spherical glow discharge plasma in methanol vapor and acetone-nitrogen mixture. A procedure for mass spectrum processing is proposed. Time-varying concentrations of all observed neutral particles are measured. Presently available data on sections of complete and dissociative ionization of molecules and their fragments, which are necessary for reconstructing concentrations of particles in plasma from measured mass spectra, are presented.


Ionization Cross Section Discharge Chamber Dissociative Ionization Engineer THERMOPHYSICS Glow Discharge Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mechold, L., Röpcke, J., Duten, X., and Rousseau, A., Plasma Sourc. Sci. Technol., 2001, vol. 10, p. 52.CrossRefADSGoogle Scholar
  2. 2.
    Hempel, F., Davies, P.B., Loffhagen, D., Mechold, L., and Röpcke, J., Plasma Sourc. Sci. Technol., 2003, vol. 12, p. S98.CrossRefADSGoogle Scholar
  3. 3.
    Mutsukura, N., Plasma Chem. Plasma Process., 2001, vol. 21, p. 265.CrossRefGoogle Scholar
  4. 4.
    Coll, P., Coscia, D., Gazeau, M.C., De Vanssay, E., Guillemin, J.C., and Raulin F., Adv. Space Res., 1995, vol. 16, p. 93.CrossRefADSGoogle Scholar
  5. 5.
    Tabares, F.L., Tafalla, D., Tanarro, I., Herrero, V.J., Islyaikin, A., and Maffiotte, C., Plasma Phys. Control. Fusion, 2002, vol. 44, p. L1.CrossRefGoogle Scholar
  6. 6.
    Penetrante, B.M., Hsiao, M.C., Bardsley, J.N., Merritt, B.T., Vogtlin, G.E., Kuthi, A., Burkhart, C.P., and Bayless, J.R., Plasma Sourc. Sci. Technol., 1997, vol. 6, p. 251.CrossRefADSGoogle Scholar
  7. 7.
    Kareev, M., Sablier, M., and Fujii, T., J. Phys. Chem., 2000, vol. 104, p. 7218.Google Scholar
  8. 8.
    Fantz, U., Plasma Sourc. Sci. Technol., 2006, vol. 15, p. S137.CrossRefADSGoogle Scholar
  9. 9.
    Magne, L., Pasquiers, S., Edon, V., Jorand, F., Postel, C., and Amorim, J., J. Phys. D: Appl. Phys., 2005, vol. 38, p. 3446.CrossRefADSGoogle Scholar
  10. 10.
    Kae-Nune, P., Perrin, J., Guillon, J., and Jolly J., Plasma Sourc. Sci. Technol., 1995, vol. 4, p. 250.CrossRefADSGoogle Scholar
  11. 11.
    Ngai, A.K., Persijn, S.T., Harren, F.J., Verbraak, H., and Linnartz, H., Appl. Phys. Lett., 2007, vol. 90, p. 081109.CrossRefADSGoogle Scholar
  12. 12.
    Schram, D.C., Plasma Sourc. Sci. Technol., 2009, vol. 18, p. 014003.CrossRefADSGoogle Scholar
  13. 13.
    Welzel, A., Rousseau, A., Davies, P.B., and Röpcke J., J. Phys.: Conf. Ser., 2007, vol. 86, p. 012012.CrossRefADSGoogle Scholar
  14. 14.
    Engeln, R., Letourneur, K.G., Boogaarts, M.G., van de Sanden M.C., and Schram, D.C., Chem. Phys. Lett., 1999, vol. 310, p. 405.CrossRefADSGoogle Scholar
  15. 15.
    Röpcke, J., Lombardi, G., Rousseau, A., and Davies P.B., Plasma Sourc. Sci. Technol., 2006, vol. 15, p. S148–S168CrossRefGoogle Scholar
  16. 16.
    Kessels, W.M., Hoefnagels, J.P., Boogaarts, M.G., Schram, D.C., and van de Sanden, M.C., J. Appl. Phys., 2001, vol. 89, p. 2065.CrossRefADSGoogle Scholar
  17. 17.
    Van Helden, J.H., van den Oever, P.J., Kessels, W.M., van de Sanden, M.C., Schram, D.C., and Engeln, R., J. Phys. Chem. A, 2007, vol. 111, p. 11460.CrossRefGoogle Scholar
  18. 18.
    Benedikt, J., Eijkman, D.J., Vandamme, W., Agarwal, S., and van de Sanden, M.C., Chem. Phys. Lett., 2005, vol. 402, p. 37.CrossRefADSGoogle Scholar
  19. 19.
    Pauser, H., Schwfirzler, C.G., Laimer, J., and Störi, H., Plasma Chem. Plasma Process., 1997, vol. 17, p. 107.CrossRefGoogle Scholar
  20. 20.
    Zarrabian, M., Leteinturier, C., and Turban, G., Plasma Sourc. Sci. Technol., 1998, vol. 7, p. 607.CrossRefADSGoogle Scholar
  21. 21.
    Ando, S., Shinohara, M., and Takayama, K., Vacuum, 1998, vol. 49, p. 113.CrossRefGoogle Scholar
  22. 22.
    Sam, M.M., Abad, L., Herrero, V.J., and Tanarro, I., J. Appl. Phys., 1992, vol. 71, p. 5372.CrossRefADSGoogle Scholar
  23. 23.
    Selvin, P.C., Iwase, K., and Fujii, T., J. Phys. D: Appl. Phys., 2002, vol. 35, p. 675.CrossRefADSGoogle Scholar
  24. 24.
    Singh, H., Coburn, J.W., and Graves, D.B., J. Vac. Sci. Technol. A, 1999, vol. 17, p. 2447.CrossRefADSGoogle Scholar
  25. 25.
    Itoh, H., Hattori, T., and Murakami, Y., Appl. Catal., 1982, vol. 2, p. 19.CrossRefGoogle Scholar
  26. 26.
    Bhargava, A. and Westmoreland, P.R., Combust. Flame, 1998, vol. 115, p. 456.CrossRefGoogle Scholar
  27. 27.
    Conde, L. and Leon, L., Phys. Plasmas, 1994, vol. 1, p. 2441.CrossRefADSGoogle Scholar
  28. 28.
    Nerushev, O.A., Novopashin, S.A., Radchenko, V.V., and Sukhinin, G.I., Phys. Rev. E, 1998, vol. 58, p. 4897.CrossRefADSGoogle Scholar
  29. 29.
    Novopashin, S.A., Radchenko, V.V., and Sakhapov, S.Z., J. Eng. Therm., 2008, vol. 17, p. 71.Google Scholar
  30. 30.
  31. 31.
    Bartlett, P.L. and Stelbovics, A.T., At. Data Nucl. Data Tables, 2004, vol. 86, p. 235.CrossRefADSGoogle Scholar
  32. 32.
    Suno, H. and Kato, T., At. Data Nucl. Data Tables, 2006, vol. 92, p. 407.CrossRefADSGoogle Scholar
  33. 33.
    Hudson, J.E., Hamilton, M.L., Vallance, C., and Harland, P.W., Phys. Chem. Chem. Phys., 2003, vol. 5, p. 3162.CrossRefGoogle Scholar
  34. 34.
    McConkey, J.W., Malonea, C.P., Johnson, P.V., Winstead, C., McKoy, V., and Kanik, I., Phys. Rep., 2008, vol. 466, p. 1.CrossRefADSGoogle Scholar
  35. 35.
    Joshipura, K.N., Vinodkumar, M., and Patel, U.M., J. Phys. B: At. Mol. Opt. Phys., 2001, vol. 34, p. 509.CrossRefADSGoogle Scholar
  36. 36.
    Deutsch, H., Becker, K., Matt, S., and Mark, T.D., Int. J.Mass Spectr., 2000, vol. 197, p. 37.CrossRefGoogle Scholar
  37. 37.
    Alman, D.A., Ruzic, D.N., and Brooks, J.N., Phys. Plasmas, 2000, vol. 7, p. 1421.CrossRefADSGoogle Scholar
  38. 38.
    Janev, R.K. and Reiter, D., Phys. Plasmas, 2002, vol. 9, p. 4071.CrossRefADSGoogle Scholar
  39. 39.
    Chatham, H., Hils, D., Robertson, R., and Gallagher, A., J. Chem. Phys., 1984, vol. 81, p. 1770.CrossRefADSGoogle Scholar
  40. 40.
    Grill, V., Walder, G., Margreiter, D., Rauth, T., Poll, H.U., Scheier, P., and Mark, T.D., Z. Physik D, 1993, vol. 25, p. 217.CrossRefADSGoogle Scholar
  41. 41.
    Fiegele, T., Grill, V., Matt, S., Lezius, M., Hanel, G., Probst, M., Scheier, P., Becker, K., Deutsch, H., Echt, O., Stamatovic, A., and Mark, T.D., Vacuum, 2001, vol. 63, p. 561.CrossRefGoogle Scholar
  42. 42.
    Bull, J.N. and Harland, P.W., Int. J. Mass Spectr., 2008, vol. 273, p. 53.CrossRefGoogle Scholar
  43. 43.
    Vacher, J.R., Jorand, F., Blin-Simiand, N., and Pasquiers, S., Int. J.Mass Spectr., 2008, vol. 273, p. 117.CrossRefGoogle Scholar
  44. 44.
    Pal, S., Chem. Phys., 2004, vol. 302, p. 119.CrossRefADSGoogle Scholar
  45. 45.
    Vinodkumar, M., Limbachiya, C., Joshipura, K.N., Vaishnav, B., and Gangopadhyay, S., J. Phys.: Conf. Ser., 2008, vol. 115, p. 012013.CrossRefADSGoogle Scholar
  46. 46.
    Rejoub, R., Morton, C.D., Lindsay, B.G., and Stebbings, R.F., J. Chem. Phys., 2003, vol. 118, p. 1756.CrossRefADSGoogle Scholar
  47. 47.
    Vacher, J.R., Jorand, F., Blin-Simiand, N., and Pasquiers, S., Chem. Phys., 2006, vol. 323, p. 587.CrossRefADSGoogle Scholar
  48. 48.
    Vacher, J.R., Jorand, F., Blin-Simiand, N., and Pasquiers, S., Chem. Phys. Lett., 2009, vol. 476, p. 178.CrossRefADSGoogle Scholar
  49. 49.
    Deutsch, H., Becker, K., Basner, K., Schmidt, M., and Mark, T.D., J. Phys. Chem. A, 1998, vol. 102, p. 8819.CrossRefGoogle Scholar
  50. 50.
    Tarnovsky, V., Deutsch, H., and Becker, K., J. Chem. Phys., 1998, vol. 109, p. 932.CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. E. Belikov
    • 1
  • S. Z. Sakhapov
    • 1
  • M. A. Smith
    • 2
  • G. Tikhonov
    • 2
  1. 1.Kutateladze Institute of Thermophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.University of ArizonaTucsonUSA

Personalised recommendations