Journal of Engineering Thermophysics

, Volume 16, Issue 4, pp 205–223 | Cite as

The phenomenology of metastable liquids and the glass transition

  • I. Gutzow
  • J. W. P. Schmelzer
  • B. Petroff


A survey is given on classical and new phenomenological approaches for describing the thermodynamics of undercooled metastable liquids and for glass transition and on the nature of glasses. It begins with Simon’s (1926/1930) and Prigogine’s (1954) concepts on the thermodynamics of vitrification. A generalized approach in the phenomenology of glass-transition is developed based on a quasi-linear extension of the formalism of the thermodynamics of irreversible processes. This approach is a generalization of ideas for the description of the kinetics of glass transition as developed initially by Vol’kenstein and Ptizyn (1956), Moynihan (1974), and Gutzow et al. (2000). It allows us to determine, as a second particular application, the temperature course of the thermodynamic functions upon vitrification (Gutzow et al. (2000)). In performing this task, both entropy freezing-in and entropy production are accounted for (Möller, Schmelzer, Gutzow (2006)), thus, essentially correcting Simon’s classical approximation, which has been in use for many years. In addition, the approach developed allows a new interpretation of the value of the Prigogine-Defay ratio (Schmelzer, Gutzow (2006)) employing in the description of vitrification only one appropriately chosen internal structural order parameter: ξ. In this way, a new picture of the thermodynamics of undercooled liquids, the glass transition, and glass stabilization is formulated.

Based on the theoretical approach developed, the applicability of the third law of thermodynamics to nonequilibrium systems, in general, and to glasses, in particular, is reconsidered. It is shown that a formulation of the third principle of thermodynamics can be given—as the principle of nonaccessibility of the absolute zero temperature—comprising both equilibrium and nonequilibrium systems. Experimental results are summarized confirming the predictions of the theoretical concepts outlined.


Glass Transition Entropy Production Irreversible Process Engineer THERMOPHYSICS Nonequilibrium System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Skripov, V.P., Metastable Liquids, New York: WILEY, 1974.Google Scholar
  2. 2.
    Skripov, V.P. and Koverda, V.P., Spontaneous Crystallization of Undercooled Liquids, Moscow: Nauka, 1984 [in Russian].Google Scholar
  3. 3.
    Skripov, V.P. and Faizullin, M.Z., Crystal-Liquid-Gas Phase Transitions and Thermodynamic Similarity, Berlin-Weinheim: WILEY-VCH, 2006.Google Scholar
  4. 4.
    Simon, F., Zur Bestimmung der freien Energie, in Handbuch der Physik, Geiger, H. and Scheel, H., Eds., Berlin: Springer Verlag, 1926, vol. 10, pp. 350–352.Google Scholar
  5. 5.
    Simon, F., Über den Zustand der unterkühlten Flüssigkeiten und Gläser, Z. anorg. allg. Chemie, 1931, vol. 203, pp. 219–227.CrossRefGoogle Scholar
  6. 6.
    Simon, F., The Third Law of Thermodynamics: A Historical Survey, The 40-th Guthrie Lecture, Yearbook Phys. Society, London, 1956, vol. 1, pp. 1–40.Google Scholar
  7. 7.
    Prigogine, I. and Defay, R., Chemical Thermodynamics, Longmans and Green, London, 1954.Google Scholar
  8. 8.
    Davies, R.O. and Jones, G.O., Thermodynamic and Kinetic Properties of Glasses, Adv. Phys., 1953, vol. 2, pp. 370–410.CrossRefADSGoogle Scholar
  9. 9.
    Gutzow, I. and Schmelzer, J., The Vitreous State: Thermodynamics, Structure, Rheology and Crystallization, Berlin, New York: Springer-Verlag, 1995.Google Scholar
  10. 10.
    Nemilov, S.V., Thermodynamic and Kinetic Aspects of the Vitreous State, London: CRS-Press, 1994.Google Scholar
  11. 11.
    Simon, F., The Third Principle of Thermodynamics, Physica, 1937, vol. 4, pp. 1089–1105.CrossRefGoogle Scholar
  12. 12.
    Gutzow, I., Über den Dampfdruck und die Löslichkeit unterkühlter Schmelzen, Zs. Phys. Chemie (Neue Folge), 1972, vol. 81, 195–212.Google Scholar
  13. 13.
    Grantcharova, E. and Gutzow, I., Vapour Pressure, Solubility, and Affinity of Under-cooled Melts and Glasses, J. Non-Cryst. Solids, 1986, vol. 81, pp. 99–127.CrossRefGoogle Scholar
  14. 14.
    Grantcharova, E., Avramov, I., and Gutzow, I., Die thermodynamischen Parameter und die Löslichkeitskurven von glasartigen Substanzen, Naturwissenschaften, 1986, vol. 73, pp. 95, 96.CrossRefADSGoogle Scholar
  15. 15.
    Bragg, W.L. and Williams, E.J., The Effect of Thermal Agitation on Atomic Arrangement in Alloys, Proc. Roy. Society (London), 1934, vol. A 145, pp. 699–730.CrossRefADSGoogle Scholar
  16. 16.
    Vol’kenstein, M.V. and Ptizyn, O.B., Relaxation Theory of Vitrification: Solution of the Basic Equation and Its Investigation, J. Techn. Phys. USSR (JTF), 1956, vol. 26, pp. 2204–2214 [in Russian].Google Scholar
  17. 17.
    Moynihan, C.T., Eastel, A.J., Wilder, J., and Tucker, J., Dependence of the Glass Transition Temperature on Heating and Cooling Rates, J. Phys. Chem., 1974, vol. 78, pp. 2673–2677.CrossRefGoogle Scholar
  18. 18.
    Gutzow, I., Ilieva, D., Babalievski, F., and Yamakov, V., Thermodynamics and Kinetics of the Glass Transition: A Generic Geometric Approach, J. Chem. Phys., 2000, vol. 112, 10 941–10 948.CrossRefGoogle Scholar
  19. 19.
    Gutzow, I., Yamakov, V., Ilieva, D., Babalievski, F., and Pye, D., Generic Phenomenological Theory of Vitrification, Glass Physics and Chemistry, 2001, vol. 27, pp. 228–245.CrossRefGoogle Scholar
  20. 20.
    Haase, R., Thermodynamik der irreversiblen Prozesse, Darmstadt: D. Steinkopff Verlag, 1953.Google Scholar
  21. 21.
    Bazarov, I.P., Thermodynamics, New York: McMillan and Co., 1964.Google Scholar
  22. 22.
    de Donder, Th. and van Rysselberghe, P., Thermodynamic Theory of Affinity: A Book of Principles, Stanford: Stanford Univ. Press, 1936.Google Scholar
  23. 23.
    Callen, H.B., Thermodynamics: An Introduction to Equilibrium Thermodynamics and Irreversible Thermodynamics, New York: Wiley, 1964.Google Scholar
  24. 24.
    Gutzow, I., Grigorova, Ts., Avramov, I., and Schmelzer, J.W.P., Generic Phenomenology of Vitrification and Relaxation and the Kohlrausch and Maxwell Equations, Phys. Chem. Glasses, 2002, vol. 43C, pp. 476–486.Google Scholar
  25. 25.
    Gutzow, I., Grigorova, Ts., and Schmelzer, J.W.P., Irreversible Thermodynamics, Reaction Kinetics, and Relaxation, Proc. of the Workshops Nucleation Theory and Applications, 2002, Schmelzer, J.W.P., Röpke, G., and Priezzhev, V.B., Eds., Joint Institute for Nuclear Research Publishing Department, Dubna, Russia, 2002, pp. 424–468.Google Scholar
  26. 26.
    Morey, G.W., The Properties of Glass, New York: Reinhold Publ., 1954.Google Scholar
  27. 27.
    Avramov, I. and Gutzow, I., Relaxation Kinetics of Glasses and of Glass-forming Melts, J. Non-Cryst. Solids, 2002, vol. 298, pp. 67–75.CrossRefGoogle Scholar
  28. 28.
    Möller, J., Gutzow, I., and Schmelzer, J.W.P., Freezingin and Production of Entropy in Vitrification, J. Chem. Phys., 2006, vol. 125, 094505/1–13.CrossRefGoogle Scholar
  29. 29.
    Petroff, B., Milchev, A., and Gutzow, I., Thermodynamic Functions of Simple (Monomeric) and of Polymeric Melts: MFA-approach and Monte-Carlo Simulation, J. Macromolec. Sci.—Physics, 1996, vol. B35, pp. 763–794.CrossRefGoogle Scholar
  30. 30.
    Gutzow, I. and Dobreva, A., Structure, Thermodynamic Properties and Cooling Rate of Glasses, J. Non-Cryst. Solids, 1991, vol. 129, pp. 266–279.CrossRefGoogle Scholar
  31. 31.
    Gupta, P.K. and Moynihan, C.T., Prigogine-Defay Ratio for Systems with More Than One Order Parameters, 1976, J. Chem. Phys., vol. 65, pp. 4136–4140.CrossRefADSGoogle Scholar
  32. 32.
    Prigogine, I., Introduction to Thermodynamics of Irreversible Processes, Springfield: C. C. Thomas Publ., 1955.Google Scholar
  33. 33.
    Thomas, S.R. and Parks, G.S., Studies on Glass: VI. Some Specific Heat Data on Boron Trioxide, J. Chem. Phys., 1931, vol. 35, pp. 2091–2102.CrossRefGoogle Scholar
  34. 34.
    Winter, A., Evolution de la viscosite du verre in fonction de la temperature, Verres et Refract, 1953, vol. 7, pp. 217–224.Google Scholar
  35. 35.
    Schnaus, U.E., Moynihan, C.T., Gammon, R.W., and Macedo, P.B., The Relation of the Glass Transition Temperature to Vibrational Characteristics in Network Glasses, Phys. Chem. Glasses, 1970, vol. 11, pp. 213–218.Google Scholar
  36. 36.
    Kinoshita, A., Characterization of Glass Transition in a As2Se3-Glass by Heat of Vaporization, J. Non-Cryst. Solids, 1980, vol. 42, pp. 447–454.CrossRefGoogle Scholar
  37. 37.
    Planck, M., Vorlesungen über Thermodynamik, VIII. Berlin: Auflage, de Gruyter Verlag, 1927, pp. 269–281.Google Scholar
  38. 38.
    Nernst, W., Die theoretischen und experimentellen Grundlagen des neuen Wärmesatzes, Halle: W. Knapp Verl., 1918.MATHGoogle Scholar
  39. 39.
    Wilks, J., Der dritte Hauptsatz der Thermodynamik, Fachbuchverlag Leipzig, 1965, pp. 40–49, 61, 137–140.Google Scholar
  40. 40.
    Landau, L.D. and Lifshitz, E.M., Statistical Physics, New York: Pergamon, 1980.Google Scholar
  41. 41.
    Tarassov, V.V., New Problems in the Physics of Glass, Moscow: Gosstroizdat, 1956 [in Russian].Google Scholar
  42. 42.
    Zeller, R.C. and Pohl, R.O., Thermal Conductivity and Specific Heats of Non-Crystalline Solids, Phys. Rev. B4, 1971, 2029–2041.ADSGoogle Scholar
  43. 43.
    Pohl, R.O., in Topics in Current Physics, No. 24: Amorphous Solids. Low Temperature Properties, Berlin, New York: Springer Verlag, 1981, p. 27.Google Scholar
  44. 44.
    Binder, K. and Kob, W., Glassy Materials and Disordered Solids: An Introduction to Their Statistical Mechanics, London, Singapore: World Scientific, 2006.Google Scholar
  45. 45.
    Data by Huncklinger, S., Sussnek, S., and Daunsfield, T., cited according to Feltz A., Amorphe und glasartige anorganische Festkörper, Berlin: Akademie-Verlag, 1983, p. 65.Google Scholar
  46. 46.
    Krause, J.T. and Kurkjian, C.R., Coefficients of Thermal Expansion of Glasses, J. Amer. Ceram. Soc., 1968, vol. 51, pp. 226–229.CrossRefGoogle Scholar
  47. 47.
    Novikova, S.I., Thermal Expansion of Solids, Moscow: Nauka, 1974 [in Russian].Google Scholar
  48. 48.
    Zemanski, M.V., Heat and Thermodynamics, London: Mc Graw Hill Book Company, 1968.Google Scholar
  49. 49.
    Gutzow, I., On the Electrochemical Behavior of Undercooled Melts and Glasses, J. Non-Cryst. Solids, 1981, vol. 45, pp. 301–324.CrossRefGoogle Scholar
  50. 50.
    Sommerfeld, A., Thermodynamik und Statistik, Wiesbaden: Dieterich, 1952.MATHGoogle Scholar
  51. 51.
    Gutzow, I. and Todorova, S., Glasses as Materials with Increased Constant Disorder as Sources of Accumulated Energy and High Chemical Reactivity, Bulg. Chemistry and Industry, 2005, vol. 76, pp. 63–69.Google Scholar
  52. 52.
    Basak, S., Nagel, R., and Giessen, B.C., Thermoelectric Power of Magnetic and Non-Magnetic Amorphous Metals, Phys. Rev. B, 1980, vol. 21, pp. 4049–4054.CrossRefADSGoogle Scholar
  53. 53.
    Baibich, N.N., Muir, W.B., Altounian, Z., and Guo-Hua, T., Thermopower and Resistivity in Amorphous Mg1−xZnx-Alloys, Phys. Rev. B, 1982, vol. 26, pp. 2963–2966.CrossRefADSGoogle Scholar
  54. 54.
    Schmelzer, J.W.P. and Gutzow, I., The Prigogine-Defay Ratio Revisited, J. Chem. Phys., 2006, vol. 125, 184511/1–11.CrossRefADSGoogle Scholar
  55. 55.
    Milchev, A. and Gutzow, I., Temperature Dependence of the Configurational Entropy of Undercooled Melts and the Nature of the Glass Transition, J. Macromol. Sci. Phys. B, 1982, vol. 21, pp. 583–615.Google Scholar
  56. 56.
    Landa, L., Landa, Ks., and Thomsen, Sc., Uncommon Description of Common Glasses, Vol. 1: Fundamentals of the Unified Theory of Glass Formation and Glass Transition, St. Petersburg: Yanus, 2004.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.R. Kaischew Institute of Physical ChemistryBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institut für Physik der Universität Rostock, UniversitätsplatzRostockGermany
  3. 3.Institute of Solid State PhysicsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations