Doklady Biochemistry and Biophysics

, Volume 485, Issue 1, pp 153–156 | Cite as

Development of a Multiplex PCR Test System for the Determination of a Transgene Based on the pBC1 Plasmid and Its Derivatives for the Expression of Recombinant Proteins in Mus musculus Milk

  • V. A. Kalmykov
  • P. A. Kusov
  • A. V. DeykinEmail author


A multiplex PCR test system for identification of the regulatory sequences of genetic constructs for transformation (promotor, insulator, and terminator) in the Mus musculus genome and for transgenic animal selection by genotyping with horizontal agarose gel electrophoresis detection was developed. The proposed system was validated by genotyping mouse strains producing human lactoferrin, heat shock protein HSP 70, firefly luciferase, and lysozyme, which were obtained by microinjections of linearized DNA into murine zygote pronucleus with random transgene integration into the genome using the pBC1 plasmid for expression of the gene of interest in milk of transformed animals (milk expression vector kit).



In the study, we used the equipment of the Core Facility of the Institute of Gene Biology, Russian Academy of Sciences. This study was supported by the Russian Science Foundation (project no. 16-14-00150).


Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. 1.
    Maksimenko, O.G., Deikin, A.V., Khodarovich, Yu.M., and Georgiev, P.G., Acta Naturae, 2013, vol. 5, no. 1, pp. 33–47.Google Scholar
  2. 2.
    De Rossi, E., Milano, A., Brigidi, P., et al., J. Bacteriol., 1992, vol. 174, no. 2, pp. 638–642.CrossRefGoogle Scholar
  3. 3.
    Amiri, YektaA., Dalman, A., Eftekhari-Yazdi, P., et al., Transgenic Res., 2013, vol. 22, no. 1, pp. 131–142.CrossRefGoogle Scholar
  4. 4.
    Zhang, J., Li, L., Cai, Y., et al., Protein, Expr. Purif., 2008, vol. 57, no. 2, pp. 127–135.CrossRefGoogle Scholar
  5. 5.
    Goldman, I.L., Georgieva, S.G., Gurskiy, Y.G., Krasnov, A.N., Deykin, A.V., Popov, A.N., Ermolkevich, T.G., Budzevich, A.I., Chernousov, A.D., and Sadchikova, E.R., Biochem. Cell Biol., 2012, vol. 90, no. 3, pp. 513–519.CrossRefGoogle Scholar
  6. 6.
    Kaiser, G.G., Mucci, N.C., Gonzalez, V., et al., J. Dairy Sci., 2017, vol. 100, no. 3, pp. 1605–1617.CrossRefGoogle Scholar
  7. 7.
    Tong, J., Wei, H., Liu, X., et al., Transgenic Res., 2011, vol. 20, no. 2, pp. 417–419.CrossRefGoogle Scholar
  8. 8.
    Lisauskas, S.F.C., Cunha, N.B., Vianna, G.R., et al., Biotechnol. Lett., 2008, vol. 30, no. 12, pp. 2063–2069.CrossRefGoogle Scholar
  9. 9.
    Zhang, R., Rao, M., Li, C., et al., Functional recombinant human anti-HAV antibody expressed in milk of transgenic mice, Transgenic Res., 2009, vol. 18, no. 3, pp. 445–453.CrossRefGoogle Scholar
  10. 10.
    dos Santos, Ade O., Souza, L.F., Borzacov, L.M., Villalobos-Salcedo, J.M., et al., Virol. J., 2014, vol. 11, p. 16.CrossRefGoogle Scholar
  11. 11.
    Qian, X., Kraft, J., Ni, Y., and Zhao, F-Q., Sci. Rep., 2014, vol. 4, article no. 6465.CrossRefGoogle Scholar
  12. 12.
    Arduin, E.I., Arora, S.I., Bamert P.R., et al., Mol. Immunol., 2015, vol. 63, no. 2, pp. 456–463.CrossRefGoogle Scholar
  13. 13.
    Kearse, M., Moir, R., Wilson, A., et al., Bioinformatics, 2012, vol. 28, no. 12, pp. 1647–1649.CrossRefGoogle Scholar
  14. 14.
    Alanio, A. and Bretagne, S., Med. Mycol., 2017, vol. 55, no. 1, pp. 56–62.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. A. Kalmykov
    • 1
  • P. A. Kusov
    • 1
    • 2
  • A. V. Deykin
    • 1
    • 3
    Email author
  1. 1.Institute of Gene Biology, Russian Academy of SciencesMoscowRussia
  2. 2.Skolkovo Institute of Science and TechnologySkolkovoRussia
  3. 3.Institute of General Pathology and Pathophysiology, Russian Academy of Medical SciencesMoscowRussia

Personalised recommendations