Skip to main content
Log in

Differentiation of Monocytic Cells Is Accompanied by a Change in the Expression of the Set of Oct-1 Isoforms

  • Biochemistry, Biophysics, and Molecular Biology
  • Published:
Doklady Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Changes in the expression level of Oct-1A, Oct-1L, Oct-1X, and Oct-1Z isoforms and CD14 surface antigen during differentiation of HL-60 monocytic cells induced in vitro by dimethyl sulfoxide were studied, and the expression level of the four Oct-1 isoforms in vivo in human monocytes was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sturm, R.A., Das, G., and Herr, W., The ubiquitous octamer-binding protein oct-1 contains a pou domain with a homeo box subdomain, Genes Dev., 1988, vol. 2, pp. 1582–1599.

    Article  CAS  PubMed  Google Scholar 

  2. Pankratova, E.V., Stepchenko, A.G., Portseva, T., Mogila, V.A., and Georgieva, S.G., Different N-terminal isoforms of Oct-1 control expression of distinct sets of genes and their high levels in Namalwa Burkitt’s lymphoma cells affect a wide range of cellular processes, Nucleic Acids Res., 2016, vol. 44, pp. 9218–9230.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Falkner, F.G. and Zachau, H.G., Correct transcription of an immunoglobulin kappa gene requires an upstream fragment containing conserved sequence elements, Nature, 1984, vol. 310, no. 5972, pp. 71–74.

    Article  CAS  PubMed  Google Scholar 

  4. Stepchenko, A.G., The nucleotide sequence of mouse OCT-1 cDNA, Nucleic Acids Res., 1992, vol. 20, no. 6, p. 1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Krylova, I.D., Portseva, T.N., Georgieva, S.G., Stepchenko, A.G., and Pankratova, E.V., New mRNA isoform of Oct-1 transcription factor is transcribed from alternative promoter, Mol. Biol. (Moscow), 2013, vol. 47, no. 4, pp. 552–558.

    Article  CAS  Google Scholar 

  6. Portseva, T.N., Krylova, I.D., Georgieva, S.G., Stepchenko, A.G., and Pankratova, E.V., New alternative promoter in regulation of the Oct-1 human gene transcription, Dokl. Biochem. Biophys., 2013, vol. 449, pp. 72–74.

    Article  CAS  PubMed  Google Scholar 

  7. Pankratova, E.V., Deyev, I.E., Zhenilo, S.V., and Polanovsky, O.L., Tissue-specific isoforms of the ubiquitous transcription factor Oct-1, Mol. Genet. Genom., 2001, vol. 266, no. 2, pp. 239–245.

    Article  CAS  Google Scholar 

  8. Luchina, N.N., Krivega, I.V., and Pankratova, E.V., Human Oct-1L isoform has tissue-specific expression pattern similar to Oct-2, Immunol. Lett, 2003, vol. 85, pp. 237–241.

    Article  CAS  PubMed  Google Scholar 

  9. Stepchenko, A.G., Luchina, N.N., and Pankratova, E.V., Cysteine 50 of the POU H domain determines the range of targets recognized by POU proteins, Nucleic Acids Res., 1997, vol. 25, pp. 2847–2853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bellance, N., Pabst, L., Allen, G., Rossignol, R., and Nagrath, D., Oncosecretomics coupled to bioenergetics identifies α-amino adipic acid, isoleucine and GABA as potential biomarkers of cancer: Differential expression of c-Myc, Oct1, and KLF4 coordinates metabolic changes, Biochim. Biophys. Acta, 2012, vol. 1817, pp. 2060–2071.

    Article  CAS  PubMed  Google Scholar 

  11. Metcalf, D., Hematopoietic cytokines, Blood, 2008, vol. 111, pp. 485–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Friedman, A.D., Transcriptional control of granulocyte and monocyte development, Oncogene, 2007, vol. 26, pp. 6816–6828.

    Article  CAS  PubMed  Google Scholar 

  13. Murao, S., Gemmell, M.A., Callaham, M.F., Anderson, N.L., and Huberman, E., Control of macrophage cell differentiation in human promyelocytic HL-60 leukemia cells by 1,25-dihydroxyvitamin D3 and phorbol- 12-myristate-13-acetate, Cancer Res., 1983, vol. 43, pp. 4989–4996.

    CAS  PubMed  Google Scholar 

  14. Lee, M.S., Son, M.Y., Park, J.I., Park, C., Lee, Y.C., Son, C.B., Kim, Y.S., Paik, S.G., Yoon, W.H., Park, S.K., Hwang, B.D., and Lim, K., Modification of octamer binding transcriptional factor is related to H2B histone gene repression during dimethyl sulfoxide-dependent differentiation of HL-60 cells, Cancer Lett., 2001, vol. 172, pp. 165–170.

    Article  CAS  PubMed  Google Scholar 

  15. Padilla, P.I., Wada, A., Yahiro, K., Kimura, M., Niidome, T., Aoyagi, H., Kumatori, A., Anami, M., Hayashi, T., Fujisawa, J., Saito, H., Moss, J., and Hirayama, T., Morphologic differentiation of HL-60 cells is associated with appearance of RPTPbeta and induction of Helicobacter pylori VacA sensitivity, J. Biol. Chem., 2000, vol. 275, pp. 15200–15206.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Krylova.

Additional information

Original Russian Text © A.G. Stepchenko, B.M. Lyanova, I.D. Krylova, Yu.V. Ilyin, S.G. Georgieva, E.V. Pankratova, 2018, published in Doklady Akademii Nauk, 2018, Vol. 483, No. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepchenko, A.G., Lyanova, B.M., Krylova, I.D. et al. Differentiation of Monocytic Cells Is Accompanied by a Change in the Expression of the Set of Oct-1 Isoforms. Dokl Biochem Biophys 483, 306–308 (2018). https://doi.org/10.1134/S1607672918060066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1607672918060066

Navigation