Advertisement

Doklady Biochemistry and Biophysics

, Volume 467, Issue 1, pp 162–164 | Cite as

The level of the Phf10 protein, a PBAF chromatin-remodeling complex subunit, correlates with the Mts1/S100A4 expression in human cancer cell lines

  • N. V. Soshnikova
  • Yu. P. Simonov
  • A. V. Brechalov
  • T. N. Portseva
  • E. V. Pankratova
  • S. G. Georgieva
Biochemistry, Biophysics and Molecular Biology

Abstract

Mts1 (S100A4) protein is a marker of metastatic tumor cells, which is associated with a poor diagnostic prognosis for cancer progression. Therefore, it is important to study the S100A4 gene expression. According to our preliminary data, PHF10, a PBAF remodeling complex component, can play an important role in the transcription regulation of the S100A4 gene. We studied the expression of S100A4 and the total PHF10 protein in some cell lines. We have found that, in the cell lines studied, the PHF10 expression is correlated with the S100A4 expression.

Keywords

DOKLADY Biochemistry S100A4 Protein S100A4 Expression S100A4 Gene S100A4 mRNA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boye, K. and Maelandsmo, G.M., Am. J. Pathol., 2010, vol. 176, pp. 528–535.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Dukhanina, E.A., Kabanova, O.D., Lukyanova, T.I., et al., Proc. Nat. Acad. Sci. U. S. A., 2009, vol. 106, pp. 13963–13967.CrossRefGoogle Scholar
  3. 3.
    Sytina, E.V. and Pankratova, E.V., Mol. Biol. (Moscow), 2003, vol. 37, pp. 755–767.CrossRefGoogle Scholar
  4. 4.
    Sturm, R.A., Das, G., and Herr, W., Genes Dev., 1988, vol. 2, pp. 1582–1599.CrossRefPubMedGoogle Scholar
  5. 5.
    Stepchenko, A.G., Nucleic Acids Res., 1992, vol. 20, p. 1419.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Luchina, N.N., Krivega, I.V., and Pankratova, E.V., Immunol. Lett., 2003, vol. 85, pp. 237–241.CrossRefPubMedGoogle Scholar
  7. 7.
    Krylova, I.D., Portseva, T.N., Georgieva, S.G., et al., Mol. Biol. (Moscow), 2013, vol. 47, pp. 634–641.CrossRefGoogle Scholar
  8. 8.
    Bentrari, F., Chantome, A., Knights, A., et al., Nucleic Acids Res., 2015, vol. 43, pp. 9757–9765.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Harte, M.T., O’Brien, G.J., Ryan, N.M., et al., Cancer Res., 2010, vol. 70, pp. 2538–2547.CrossRefPubMedGoogle Scholar
  10. 10.
    Vorobyeva, N.E., Nikolenko, J.V., Nabirochkina, E.N., et al., Nucleic Acids Res., 2012, vol. 40, pp. 7319–7331.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Brechalov, A.V., Georgieva, S.G., and Soshnikova, N.V., Cell Cycle, 2014, vol. 13, pp. 1970–1979.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Brechalov, A.V., Valieva, M.E., Georgieva, S.G., et al., Mol. Biol. (Moscow), 2015, vol. 50, no. 1, pp. 1–7.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • N. V. Soshnikova
    • 1
  • Yu. P. Simonov
    • 1
  • A. V. Brechalov
    • 1
  • T. N. Portseva
    • 1
  • E. V. Pankratova
    • 1
  • S. G. Georgieva
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations