Doklady Biochemistry and Biophysics

, Volume 467, Issue 1, pp 141–144 | Cite as

Investigation of the effect of α-melanocyte-stimulating hormone on proliferation and early stages of differentiation of human induced pluripotent stem cells

  • E. V. Novosadova
  • E. S. Manuilova
  • E. L. Arsenyeva
  • L. A. Andreeva
  • O. S. Lebedeva
  • I. A. Grivennikov
  • N. F. Myasoedov
Biochemistry, Biophysics and Molecular Biology

Abstract

We have studied the influence of α-melanocyte-stimulating hormone (α-MSH) on proliferation and early stages of differentiation of human induced pluripotent stem cells (iPSc). We have demonstrated that α-MSH receptor genes are expressed in undifferentiated iPSc. The expression levels of MCR1, MCR2, and MCR3 increased at the embryoid body (EB) formation stage. The formation of neural progenitors was accompanied by elevation of MCR2, MCR3, and MCR4 expression. α-MSH had no effect on EB generation and iPSc proliferation at concentrations ranging from 1 nM to 10 μM. At the same time, α-MSH increased the generation of neural rosettes in human iPSc cultures more than twice.

Keywords

Neural Progenitor iPSc Embryoid Body DOKLADY Biochemistry Phate Buffer Saline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pritchard, L.E. and White, A., Endocrinology, 2007, vol. 148, pp. 4201–4207.CrossRefPubMedGoogle Scholar
  2. 2.
    Dolotov, O.V., Seredenina, T.S., Levitskaya, N.G., et al., Dokl. Biol. Sci., 2003, vol. 391, pp. 292–295.CrossRefPubMedGoogle Scholar
  3. 3.
    Dolotov, O.V., Karpenko, E.A., Seredenina, T.S., et al., J. Neurochem., 2006, vol. 97, Suppl. 1, pp. 82–86.CrossRefPubMedGoogle Scholar
  4. 4.
    Hol, E.M., Gispen, W.H., and Bar, P.R., Peptides, 1995, vol. 16, no. 5, pp. 979–993.CrossRefPubMedGoogle Scholar
  5. 5.
    Strand, F.L., Lee, S.J., Lee, T.S., et al., Rev. Neurosci., 1993, vol. 4, no. 4, p. 5.CrossRefGoogle Scholar
  6. 6.
    Adan, R.A., van der Kraan, M., Doornbos, R.P., et al., Brain Res. Mol. Brain Res., 1996, vol. 36, pp. 37–44.CrossRefPubMedGoogle Scholar
  7. 7.
    Brannvall, K., Acta Universitatis Upsaliensis, Uppsala, 2004, pp. 9–62.Google Scholar
  8. 8.
    Grivennikov, I.A., Dolotov, O.V., Zolotarev, Y.A., et al., Restor. Neurol. Neurosci., 2008, vol. 26, pp. 35–43.PubMedGoogle Scholar
  9. 9.
    Dolotov, O.V., Dubynina, E.V., Markov, D.D., et al., Vopr. Biol. Med. Farmakol. Khim., 2011, no. 4, pp. 10–16.Google Scholar
  10. 10.
    Ma, K. and McLaurin, J., J. Neurosci., 2014, vol. 34, pp. 6736–6745.CrossRefPubMedGoogle Scholar
  11. 11.
    Manuilova, E.S., Arsen’eva, E.L., Novosadova, E.V., Grivennikov, I.A., and Myasoedov, N.F., Dokl. Biol. Sci., 2013, vol. 453, pp. 387–390.CrossRefPubMedGoogle Scholar
  12. 12.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S., Cell, 2007, vol. 131, pp. 861–872.CrossRefPubMedGoogle Scholar
  13. 13.
    Novosadova, E.V. and Grivennikov, I.A., Usp. Biol. Khim., 2014, vol. 54, pp. 3–38.Google Scholar
  14. 14.
    Nekrasov, E.D., Lebedeva, O.S., Chestkov, I.V., Syusina, M.A., Fedotova, E.Yu., Lagar’kova, M.A., Kiselev, S.L., Grivennikov, I.A., and Illarioshkin, S.N., Klet. Transplantol. Tkan. Inzhener., 2011, vol. 6, no. 4, pp. 1–7.Google Scholar
  15. 15.
    Novosadova, E.V, Manuilova, E.S., Arsen’eva, E.L., et al., Acta Natur., 2009, no. 2, pp. 107–111.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. V. Novosadova
    • 1
  • E. S. Manuilova
    • 1
  • E. L. Arsenyeva
    • 1
  • L. A. Andreeva
    • 1
  • O. S. Lebedeva
    • 1
  • I. A. Grivennikov
    • 1
  • N. F. Myasoedov
    • 1
  1. 1.Institute of Molecular GeneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations