Advertisement

Doklady Biochemistry and Biophysics

, Volume 465, Issue 1, pp 401–405 | Cite as

Energy transfer pathways among phycobilin chromophores and fluorescence emission spectra of the phycobilisome core at 293 and 77 K

  • V. I. Stadnichuk
  • E. P. Lukashev
  • M. F. Yanyushin
  • D. V. Zlenko
  • E. M. Muronez
  • I. N. Stadnichuk
  • P. M. Krasilnikov
Biochemistry, Biophysics and Molecular Biology
  • 75 Downloads

Abstract

Energy transfer pathways between phycobiliproteins chromophores in the phycobilisome (PBS) core of the cyanobacterium Synechocystis sp. PCC 6803 were investigated. The computer 3D model of the PBS core with determination of chromophore to chromophore distance was created. Our kinetic equations based on this model allowed us to describe the relative intensities of the fluorescence emission of the short(peaked at 665 nm) and long-wavelength (peaked at 680 nm) chromophores in the PBS core at low and room temperatures. The difference of emissions of the PBS core at 77 and 293 K are due to the back energy transfer, which is observed at room temperature and is negligible at 77 K.

Keywords

Fluorescence Quantum Yield DOKLADY Biochemistry Chromophore Molecule Energy Transfer Pathway Terminal Emitter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stadnichuk, I.N., Krasil’nikov, P.M., and Zlenko, D.V., Mikrobiologiya, 2015, vol. 84, pp. 131–141.Google Scholar
  2. 2.
    Watanabe, M. and Ikeuchi, M., Photosynth. Res., 2013, vol. 116, pp. 265–276.PubMedCrossRefGoogle Scholar
  3. 3.
    Glazer, A.N., Methods Enzymol., 1988, vol. 167, pp. 304–312.CrossRefGoogle Scholar
  4. 4.
    MacColl, R., Biochim. Biophys. Acta, 2004, vol. 1657, pp. 73–81.PubMedCrossRefGoogle Scholar
  5. 5.
    Arteni, A.A., Ajlani, G., and Boekema, T.J., Biochim. Biophys. Acta., 2009, vol. 1787, pp. 272–279.PubMedCrossRefGoogle Scholar
  6. 6.
    Grabowski, J. and Gantt, E., Photochem. Photobiol., 1978, vol. 28, pp. 39–45.CrossRefGoogle Scholar
  7. 7.
    Forster, T., in Modern Quantum Chemistry, New York: Acad. Press, 1965, pp. 93–137.Google Scholar
  8. 8.
    Stadnichuk, I.N., Yanyushin, M.F., Bernat, G., et al., J. Photochem. Photobiol. B: Biol., 2013, vol. 125, pp. 137–145.CrossRefGoogle Scholar
  9. 9.
    Marx, A. and Adir, N., Biochim. Biophys. Acta., 2013, vol. 1827, pp. 311–318.PubMedCrossRefGoogle Scholar
  10. 10.
    Ren, Y., Chi, B., Melhem, O., et al., J. Comput. Chem., 2013, vol. 34, pp. 1005–1012.PubMedCrossRefGoogle Scholar
  11. 11.
    Padyana, A.K. and Ramakumar, S., Biochim. Biophys. Acta., 2006, vol. 1757, pp. 161–165.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. I. Stadnichuk
    • 1
  • E. P. Lukashev
    • 1
  • M. F. Yanyushin
    • 2
  • D. V. Zlenko
    • 1
  • E. M. Muronez
    • 1
  • I. N. Stadnichuk
    • 3
  • P. M. Krasilnikov
    • 1
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchinoRussia
  3. 3.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations