Rolling Systems and Their Billiard Limits

Abstract

Billiard systems, broadly speaking, may be regarded as models of mechanical systems in which rigid parts interact through elastic impulsive (collision) forces. When it is desired or necessary to account for linear/angular momentum exchange in collisions involving a spherical body, a type of billiard system often referred to as no-slip has been used. In recent work, it has become apparent that no-slip billiards resemble nonholonomic mechanical systems in a number of ways. Based on an idea by Borisov, Kilin and Mamaev, we show that no-slip billiards very generally arise as limits of nonholonomic (rolling) systems, in a way that is akin to how ordinary billiards arise as limits of geodesic flows through a flattening of the Riemannian manifold.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Arnold, V. I., Small Denominators and Problems of Stability of Motion in Classical and Celestial Mechanics, Russian Math. Surveys, 1963, vol. 18, no. 6, pp. 85–191; see also: Uspekhi Mat. Nauk, 1963, vol. 18, no. 6, pp. 91-192.

    MathSciNet  Article  Google Scholar 

  2. 2.

    Dynamical Systems: VII. Integrable Systems Nonholonomic Dynamical Systems,V. I. Arnold, S. P. Novikov, Encyclopaedia Math. Sci., vol. 16, Berlin: Springer, 1994.

    Google Scholar 

  3. 3.

    Bloch, A. M.,Ergodic Theory of Frame Flows Nonholonomic Mechanics and Control,Interdiscip. Appl. Math., vol. 24, New York: Springer, 2015.

    Google Scholar 

  4. 4.

    Brin, M., Ergodic Theory of Frame Flows, in Ergodic Theory and Dynamical Systems: II (College Park, Md., 1979/1980), A. Katok (Ed.), Progr. Math., vol. 21, Boston, Mass.: Birkhäuser, 1982, pp. 163–183.

    Google Scholar 

  5. 5.

    Brin, M. and Gromov, M., On the Ergodicity of Frame Flows, Invent. Math., 1980, vol. 60, no. 1, pp. 1–7.

    MathSciNet  Article  Google Scholar 

  6. 6.

    Borisov, A. V., Kilin, A. A., and Mamaev, I. S., On the Model of Non-Holonomic Billiard, Regul. Chaotic Dyn., 2011, vol. 16, no. 6, pp. 653–662.

    MathSciNet  Article  Google Scholar 

  7. 7.

    Borisov, A. V., Mamaev, I. S., and Kilin, A. A., Rolling of a Ball on a Surface: New Integrals and Hierarchy of Dynamics, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 201–219.

    MathSciNet  Article  Google Scholar 

  8. 8.

    Broomhead, D. S. and Gutkin, E., The Dynamics of Billiards with No-Slip Collisions, Phys. D, 1993, vol. 67, no. 1–3, pp. 188–197.

    MathSciNet  Article  Google Scholar 

  9. 9.

    Chumley, T., Cook, S., Cox, C., and Feres, R., Rolling and No-Slip Bouncing in Cylinders, J. Geom. Mech., 2020, vol. 12, no. 1, pp. 53–84.

    MathSciNet  Article  Google Scholar 

  10. 10.

    Cox, C. and Feres, R., No-Slip Billiards in Dimension Two, in Dynamical Systems, Ergodic Theory, and Probability: In Memory of Kolya Chernov, Contemp. Math., vol. 698, Providence, R.I.: AMS, 2017, pp. 91–110.

    Google Scholar 

  11. 11.

    Cox, C., Feres, R., and Zhang, H.-K., Stability of Periodic Orbits in No-Slip Billiards, Nonlinearity, 2018, vol. 31, no. 10, pp. 4443–4471.

    MathSciNet  Article  Google Scholar 

  12. 12.

    Cox, C. and Feres, R., Differential Geometry of Rigid Bodies Collisions and Non-Standard Billiards, Discrete Contin. Dyn. Syst., 2016, vol. 36, no. 11, pp. 6065–6099.

    MathSciNet  Article  Google Scholar 

  13. 13.

    Garwin, R. L., Kinematics of an Ultraelastic Rough Ball, Am. J. Phys., 1969, vol. 37, no. 1, pp. 88–92.

    Article  Google Scholar 

  14. 14.

    Hefner, B. T., The Kinematics of a Superball Bouncing between Two Vertical Surfaces, Am. J. Phys., 2004, vol. 72, no. 7, pp. 875–883.

    Article  Google Scholar 

  15. 15.

    Kourganoff, M., Anosov Geodesic Flows, Billiards and Linkages, Comm. Math. Phys., 2016, vol. 344, no. 3, pp. 831–856.

    MathSciNet  Article  Google Scholar 

  16. 16.

    Larralde, H., Leyvraz, F., and Mejía-Monasterio, C., Transport Properties of a Modified Lorentz Gas, J. Statist. Phys., 2003, vol. 113, no. 1–2, pp. 197–231.

    MathSciNet  Article  Google Scholar 

  17. 17.

    Mejía-Monasterio, C., Larralde, H., and Leyvraz, F., Coupled Normal Heat and Matter Transport in a Simple Model System, Phys. Rev. Lett., 2001, vol. 86, no. 24, pp. 5417–5420.

    Article  Google Scholar 

  18. 18.

    Wojtkowski, M. P., The System of Two Spinning Disks in the Torus, Phys. D, 1994, vol. 71, no. 4, pp. 430–439.

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Christopher Cox or Renato Feres or Bowei Zhao.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

MSC2010

70F25

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cox, C., Feres, R. & Zhao, B. Rolling Systems and Their Billiard Limits. Regul. Chaot. Dyn. 26, 1–21 (2021). https://doi.org/10.1134/S1560354721010019

Download citation

Keywords

  • no-slip billiards
  • nonholonomic systems