Skip to main content
Log in

Dynamics-Based Motion Planning for a Pendulum-Actuated Spherical Rolling Robot

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

This paper deals with the dynamics and motion planning for a spherical rolling robot with a pendulum actuated by two motors. First, kinematic and dynamic models for the rolling robot are introduced. In general, not all feasible kinematic trajectories of the rolling carrier are dynamically realizable. A notable exception is when the contact trajectories on the sphere and on the plane are geodesic lines. Based on this consideration, a motion planning strategy for complete reconfiguration of the rolling robot is proposed. The strategy consists of two trivial movements and a nontrivial maneuver that is based on tracing multiple spherical triangles. To compute the sizes and the number of triangles, a reachability diagram is constructed. To define the control torques realizing the rest-to-rest motion along the geodesic lines, a geometric phase-based approach has been employed and tested under simulation. Compared with the minimum effort optimal control, the proposed technique is less computationally expensive while providing similar system performance, and thus it is more suitable for real-time applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhattacharya, S. and Agrawal, S.K., Spherical Rolling Robot: A Design and Motion Planning Studies, IEEE Trans. Robot. Autom., 2000, vol. 16, no. 6, pp. 835–839

    Article  Google Scholar 

  2. Bicchi, A., Balluchi, A., Prattichizzo, D., and Gorelli, A., Introducing the “SPHERICLE”: An Experimental Testbed for Research and Teaching in Nonholonomy, in Proc. of the IEEE Internat. Conf. on Robotics and Automation (Albuquerque,N.M., USA, 1997): Vol. 3, pp. 2620–2625.

    Article  Google Scholar 

  3. Borisov, A. V., Kilin, A.A., and Mamaev, I. S., How to Control Chaplygin’s Sphere Using Rotors, Regul. Chaotic Dyn., 2012, vol. 17, nos. 3–4, pp. 258–272.

    Article  MathSciNet  MATH  Google Scholar 

  4. Borisov, A. V., Kilin, A.A., and Mamaev, I. S., How to Control Chaplygin’s Sphere Using Rotors: 2, Regul. Chaotic Dyn., 2013, vol. 18, nos. 1–2, pp. 144–158.

    Article  MathSciNet  MATH  Google Scholar 

  5. Chase, R. and Pandya, A., A Review of Active Mechanical Driving Principles of Spherical Robots, Robotics, 2012, vol. 1, no. 1, pp. 3–23

    Article  Google Scholar 

  6. Das, T., Mukherjee, R., and Yuksel, H., Design Considerations in the Development of a Spherical Mobile Robot, in Proc. of the 15th SPIE Annual International Symposium on Aerospace/Defense Sensing, Simulation, and Controls (Orlando, Fla., Apr 2001): Vol. 4364, pp. 61–71.

    Google Scholar 

  7. Halme, A., Schonberg, T., and Wang, Y., Motion Control of a Spherical Mobile Robot, in Proc. of the 4th Internat. Workshop on Advanced Motion Control (Mie, Japan, 1996): Vol. 1, pp. 259–264.

    Article  Google Scholar 

  8. Harada, K., Kawashima, T., and Kaneko, M., Rolling Based Manipulation under Neighborhood Equilibrium, Int. J. Rob. Res., 2002, vol. 21, nos. 5–6, pp. 463–474.

    Article  Google Scholar 

  9. Ishikawa, M., Kitayoshi, R., and Sugie, T., Volvot: A Spherical Mobile Robot with Eccentric Twin Rotors, in Proc. of the IEEE International Conference on Robotics and Biomimetics (Phuket, Thailand, Dec 7–11 2011), pp. 1462–1467.

    Google Scholar 

  10. Ishikawa, M., Kobayashi, Y., Kitayoshi, R., and Sugie, T., The Surface Walker: A Hemispherical Mobile Robot with Rolling Contact Constraints, in Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’2009, St. Louis, USA, Oct 10–15 2009), pp. 2446–2451.

    Google Scholar 

  11. Ivanov, A.P., On the Control of a Robot Ball Using Two Omniwheels, Regul. Chaotic Dyn., 2015, vol. 20, no. 4, pp. 441–448

    Article  MathSciNet  MATH  Google Scholar 

  12. Ivanova, T. B. and Pivovarova, E. N., Dynamics and Control of a Spherical Robot with an Axisymmetric Pendulum Actuator, Nonlinear Dynamics & Mobile Robotics, 2013, vol. 1, no. 1, pp. 71–85

    Google Scholar 

  13. Javadi, A. and Mojabi, P., Introducing Glory: A Novel Strategy for an Omnidirectional Spherical Rolling Robot, ASME J. Dyn. Syst. Meas. Control., 2004, vol. 126, no. 3, pp. 678–683

    Article  Google Scholar 

  14. Joshi, V. A. and Banavar, R.N., Motion Analysis of a Spherical Mobile Robot, Robotica, 2009, vol. 27, no. 3, pp. 343–353

    Article  Google Scholar 

  15. Karavaev, Yu. L. and Kilin, A.A., Nonholonomic Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform: Theory and Experiments, Proc. Steklov Inst. Math., 2016, vol. 295, pp. 158–167 see also: Tr. Mat. Inst. Steklova, 2016, vol. 295, pp. 174–183

    Article  MathSciNet  MATH  Google Scholar 

  16. Karavaev, Yu. L. and Kilin, A.A., The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform, Regul. Chaotic Dyn., 2015, vol. 20, no. 2, pp. 134–152

    Article  MathSciNet  MATH  Google Scholar 

  17. Kelly, S. D. and Murray, R. D., Geometric Phases and Robotic Locomotion, J. Robotic Systems, 1995, vol. 12, no. 6, pp. 417–431

    Article  MATH  Google Scholar 

  18. Kilin, A. A., Pivovarova, E. N., and Ivanova, T.B., Spherical Robot of Combined Type: Dynamics and Control, Regul. Chaotic Dyn., 2015, vol. 20, no. 6, pp. 716–728

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, Z. and Canny, J., Motion of Two Rigid Bodies with Rolling Constraint, IEEE Trans. Robot. Autom., 1990, vol. 6, no. 1, pp. 62–72

    Article  Google Scholar 

  20. Luenberger, D., Optimization by Vector Space Methods, New York: Wiley, 1969.

    MATH  Google Scholar 

  21. Lurie, A. I., Analytical Mechanics, Berlin: Springer, 2002.

    Book  MATH  Google Scholar 

  22. Mahboubi, S., Seyyed Fakhrabadi, M.M., and Ghanbari, A., Design and Implementation of a Novel Spherical Mobile Robot, J. Intell. Robot. Syst., 2013, vol. 71, no. 1, pp. 43–64

    Article  Google Scholar 

  23. Marigo, A. and Bicchi, A., Rolling Bodies with Regular Surface: Controllability Theory and Applications, IEEE Trans. Autom. Control, 2000, vol. 45, no. 9, pp. 1586–1599

    Article  MathSciNet  MATH  Google Scholar 

  24. Morinaga, A., Svinin, M., and Yamamoto, M., A Motion Planning Strategy for a Spherical Rolling Robot Driven by Two Internal Rotors, IEEE Trans. on Robotics, 2014, vol. 30, no. 4, pp. 993–1002

    Article  Google Scholar 

  25. Mukherjee, R., Minor, M., and Pukrushpan, J., Motion Planning for a SphericalMobile Robot: Revisiting the Classical Ball-Plate Problem, ASME J. Dyn. Syst. Meas. Control., 2002, vol. 124, no. 4, pp. 502–511

    Article  Google Scholar 

  26. Murray, R. M., Li, Z., and Sastry, S. Sh., A Mathematical Introduction to Robotic Manipulation, Boca Raton, Fla.: CRC, 1994.

    MATH  Google Scholar 

  27. Neimark, Ju. I. and Fufaev, N. A., Dynamics of Nonholonomic Systems, Trans. Math. Monogr., vol. 33, Providence,R.I.: AMS, 1972.

  28. O’Neill, B., Elementary Differential Geometry, 2nd ed., rev., New York: Acad. Press, 2006.

    MATH  Google Scholar 

  29. Oriolo, G. and Vendittelli, M., A Framework for the Stabilization of General Nonholonomic Systems with an Application to the Plate-Ball Mechanism, IEEE Trans. Robot., 2005, vol. 21, no. 2, pp. 162–175

    Article  Google Scholar 

  30. Sofronniou, M. and Knapp, R., Advanced Numerical Differential Equation Solving in MATHEMATICA, Wolfram Research, Inc., 2008.

    Google Scholar 

  31. Sugiyama, Y., Shiotsu, A., Yamanaka, M., and Hirai, S., Circular/Spherical Robots for Crawling and Jumping, in Proc. of the 2005 IEEE International Conference on Robotics and Automation (Barcelona, Spain, Apr 2005), pp. 3595–3600.

    Chapter  Google Scholar 

  32. Suzuki, K., Svinin, M., and Hosoe, S., Motion Planning for Rolling Based Locomotion, J. Robot. Mechatron., 2005, vol. 17, no. 5, pp. 537–545

    Article  Google Scholar 

  33. Svinin, M. and Hosoe, S., Motion Planning Algorithms for a Rolling Sphere with Limited Contact Area, IEEE Trans. Robot., 2008, vol. 24, no. 3, pp. 612–625

    Article  Google Scholar 

  34. Svinin, M., Morinaga, A., and Yamamoto, M., On the Dynamic Model and Motion Planning for a Spherical Rolling Robot Actuated by Orthogonal Internal Rotors, Regul. Chaotic Dyn., 2013, vol. 18, nos. 1–2, pp. 126–143.

    Article  MathSciNet  MATH  Google Scholar 

  35. Wittenburg, J., Dynamics of Systems of Rigid Bodies, 2nd ed., Stuttgart: Teubner, 1977.

    Book  MATH  Google Scholar 

  36. Ylikorpi, T. J., Halme, A. J., and Forsman, P. J., Dynamic Modeling and Obstacle-Crossing Capability of Flexible Pendulum-Driven Ball-Shaped Robots, Rob. Auton. Syst., 2017, vol. 87, pp. 269–280

    Article  Google Scholar 

  37. CRC Standard Mathematical Tables and Formulae, D. Zwillinger (Ed.), Boca Raton,Fla.: CRC, 1995, pp. 468–471.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Svinin, M. & Yamamoto, M. Dynamics-Based Motion Planning for a Pendulum-Actuated Spherical Rolling Robot. Regul. Chaot. Dyn. 23, 372–388 (2018). https://doi.org/10.1134/S1560354718040020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354718040020

Keywords

MSC2010 numbers

Navigation